• 제목/요약/키워드: inositol 1,4,5-trisphosphate receptor

검색결과 27건 처리시간 0.028초

Plant Inositol Signaling - Biochemical Study of Phospholipase C and D-myo-inositol -1,4,5-trisphosphate receptor

  • Martinec, Jan;Feltl, Tomas;Nokhrina, Katerina;Zazimalova, Eva;Machackova, Ivana
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.375-377
    • /
    • 2000
  • It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the hydrolysis of phosphatidyl-4,5-bisphosphate catalysed by phosphatidylinositol - specific phospholipase C yields to D-myo-inositol - 1,4,5-trisphosphate and diacylglycerol, which are well known second messengers. The binding of InsP$_3$to a receptor located on the endoplasmic reticulum triggers a calcium release from the endoplasmic reticulum. We have detected and partially characterised key components of phosphoinositide signaling. First, tobacco microsomal fraction and plasma membrane PI-PLC. Consecutively, using a radioligand binding assay we have identified a $Ca^{2+}$ -dependent high affinity InsP$_3$binding site in microsomal membrane fraction vesicle preparation and then we have measured inositol-1,4,5-trisphosphate induced calcium release from tobacco microsomal fraction. These findings suggest that phosphoinositide signaling system is present and operates in the tobacco suspension culture.e.

  • PDF

아데노바이러스를 이용한 성체 심실 근세포 이노시톨 1,4,5-삼인산 수용체 제 2 아형의 발현 억제 (Knock-down of Type 2 Inositol 1,4,5-Trisphosphate Receptors using Adenovirus in Adult Ventricular Myocytes)

  • 손민정;크리슈나 피 수베디;우선희
    • 약학회지
    • /
    • 제54권1호
    • /
    • pp.8-12
    • /
    • 2010
  • Inositol 1,4,5-trisphosphate ($IP_3$) receptor ($IP_3R$)-mediated signaling pathway is involved in many cellular processes including fertilization, apoptosis and neuronal function. Although cardiac myocytes express the $IP_3R$, its pathophysiological role has not been clearly understood because of limited selectivity of currently available pharmacological blockers. In the present study we constructed shRNA-expressing adenovirus to knock-down the type 2 $IP_3R$ ($IP_3R2$), a major subtype in cardiac ventricular myocytes, and demonstrated that the virus successfully eliminated the expression and localization of the $IP_3R2$. These results may provide a reliable tool for probing pathophysiological roles of the $IP_3R2$ in isolated intact cardiac myocytes.

전단 자극에 의한 심방 근세포 칼슘 웨이브의 발생: Phospholipase C-이노시톨 1,4,5-삼인산 수용체 신호전달의 역할 (Activation of a Ca2+ wave by Shear Stress in Atrial Myocytes: Role of Phospholipase C-inositol 1,4,5-Trisphosphate Receptor Signaling)

  • 김준철;우선희
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.158-163
    • /
    • 2015
  • Cardiac myocytes are subjected to fluid shear stress during each contraction and relaxation. Under pathological conditions, such as valve disease, heart failure or hypertension, shear stress in cardiac chamber increases due to high blood volume and pressure. The shear stress induces proarrhythmic longitudinal global $Ca^{2+}$ waves in atrial myocytes. In the present study, we further explored underlying cellular mechanism for the shear stress-induced longitudinal global $Ca^{2+}$ wave in isolated rat atrial myocytes. A shear stress of ${\sim}16dyn/cm^2$ was applied onto entire single myocyte using pressurized fluid puffing. Confocal $Ca^{2+}$ imaging was performed to measure local and global $Ca^{2+}$ signals. Shear stress elicited longitudinally propagating global $Ca^{2+}$ wave (${\sim}80{\mu}m/s$). The occurrence of shear stress-induced atrial $Ca^{2+}$ wave was eliminated by the inhibition of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors ($IP_3Rs$). In addition, pretreatment of phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the generation of longitudinal $Ca^{2+}$ wave under shear stress. Our data suggest that shear-induced longitudinal $Ca^{2+}$ wave may be induced by $Ca^{2+}$-induced $Ca^{2+}$ release through the RyRs which is triggered by $PLC-IP_3R$ signaling in atrial myocytes.

이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절 (Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria)

  • 이향진;라스클리만;마틴모라드;우선희
    • 약학회지
    • /
    • 제48권6호
    • /
    • pp.352-357
    • /
    • 2004
  • Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.

Real-time Imaging of Inositol 1,4,5-trisphosphate Movement in Mouse Salivary Gland Cells

  • Hong, Jeong-Hee;Lee, Syng-Ill;Shin, Dong-Min
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.125-129
    • /
    • 2008
  • Inositol 1,4,5-trisphosphate ($IP_3$) plays an important role in the release of $Ca^{2+}$ from intracellular stores into the cytoplasm in a variety of cell types. $IP_3$ translocation dynamics have been studied in response to many types of cell signals. However, the dynamics of cytosolic $IP_3$ in salivary acinar cells are unclear. A green fluorescent protein (GFP)-tagged pleckstrin homology domain (PHD) was constructed and introduced into a phospholipase C ${\delta}1$ (PLC ${\delta}1$) transgenic mouse, and then the salivary acinar cells were isolated. GFP-PHD was heterogeneously localized at the plasma membrane and intracellular organelles in submandibular gland and parotid gland cells. Application of trypsin, a G protein-coupled receptor activator, to the two types of cells caused an increase in GFP fluorescence in the cell cytoplasm. The observed time course of trypsin-evoked $IP_3$ movement in acinar cells was independent of cell polarity, and the fluorescent label showed an immediate increase throughout the cells. These results suggest that GFP-PHD in many tissues of transgenic mice, including non-cultured primary cells, can be used as a model for examination of $IP_3$ intracellular dynamics.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium

  • Son, Aran;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.51-57
    • /
    • 2015
  • The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of grampositive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.

Inositol 1,4,5-Trisphosphate-induced Increase in $Ca^{2+}-ATPase$ Activity in the Microsomes of Tracheal Epithelial Cells

  • Cho, Hyoung-Jin;Park, Sung-Shin;Kim, Young-Kee
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.269-277
    • /
    • 1995
  • Membrane vesicles were prepared by differential centrifugation from epithelial cells of porcine trachea. Total activity of microsomal ATPases was measured spectrophotometrically by a coupled enzyme assay. The steady-state activity of the enzyme was $329{\pm}10$ nmol/min mg protein. Thapsigargin, a specific antagonist of intracellular $Ca^{2+}-ATPase$, inhibited about 50% of the activity, leaving $178{\pm}18\;nmol/min .mg$ protein (n=6), indicating that the $Ca^{2+}-ATPase$ is one of the major microsomal ATPases. The microsomes used in this study appeared to be tight-sealed vesicles since they showed saturation in $^{45}Ca^{2+}$ uptake experiments. Inositol 1,4,5-trisphosphate $InsP_{3}, 4\;{\mu}M$, an agonist of $InsP_{3}$-sensitive $Ca^{2+}$ release channel ($InsP_{3}$, receptor), and Ca-ionophore A23187 $(10\;{\mu}M)$ induced $^{45}Ca^{2+}$ releases of 20% and 50% of stored $^{45}Ca^{2+}$, respectively. The addition of $(10\;{\mu}M\;InsP_{3}$ also increased the microsomal ATPase activity from $282{\pm}8$ nmol/min mg protein to $334{\pm}21$ nmol/min . mg protein in the intact vesicles. Similar increase in the activity was observed by making microsomes leaky (uncoupling) using the Ca-ionophore A23187. ;$InsP_{3}-induced$ effects were blocked by either thapsigargin or heparin suggesting that: 1) the $InsP_{3}-induced$ increase in ATPase activity is mediated by microsomal $Ca^{2+}-ATPase$, and 2) dissipation of $Ca^{2+}$ gradient across the microsomal membrane is responsible for the $InsP_{3}-induced$ effect. In order to test the dependence of the $Ca^{2+}-ATPase$ activity on the activity of $InsP_{3}-induced$ the activity of ATPases was monitored in various concentrations of free $Ca^{2+}$ using $EGTA-Ca^{2+}$ buffers. The $Ca^{2+}$-dependent biphasic change is the well-known character of $InsP_{3} receptor but not of microsomal $Ca^{2+}-ATPase$ in non-excitable cells; however, the activity of microsomal ATPase appeared biphasic and a maxim진 activity of $397{\pm}36nmol/min\;.mg$ protein was obtained in the solution containing 100 nM free $Ca^{2+}$. Below or above this concentration, the activity of ATPases was lower. These results strongly support a positive correlation of microsomal $Ca^{2+}-ATPase$ to the $InsP_{3}$ receptors in epithelial microsomes.

  • PDF