• Title/Summary/Keyword: inorganic oxide

Search Result 302, Processing Time 0.037 seconds

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells (P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구)

  • Gisung Kim;Mijoung Kim;Hyojung Kim;JungYup Yang
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

Fabrication of Thin Film Transistors based on Sol-Gel Derived Oxide Semiconductor Layers by Ink-Jet Printing Technology

  • Mun, Ju-Ho;Kim, Dong-Jo;Song, Geun-Gyu;Jeong, Yeong-Min;Gu, Chang-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.16.1-16.1
    • /
    • 2009
  • We have fabricated solution processed oxide semiconductor active layer for thin film transistors (TFTs). The oxide semiconductor layers were prepared by ink-jet printing the sol-gel precursor solution based on doped-ZnO. Inorganic ZnO-based thin films have drawn significant attention as an active channel layer for TFTs applications alternative to conventional Si-based materials and organic semiconducting materials, due to their wide energy band gap, optical transparency, high mobility, and better stability. However, in spite of such excellent device performances, the fabrication methods of ZnO related oxide active layer involve high cost vacuum processes such as sputtering and pulsed laser deposition. Herein we introduced the ink-jet printing technology to prepare the active layers of oxide semiconductor. Stable sol-gel precursor solutions were obtained by controlling the composition of precursor as well as solvents and stabilizers, and their influences on electrical performance of the transistors were demonstrated by measuring electrical parameters such as off-current, on-current, mobility, and threshold voltage. Microstructure and thermal behavior of the doped ZnO films were investigated by SEM, XRD, and TG/DTA. Furthermore, we studied the influence of the ink-jet printing conditions such as substrate temperature and surface treatment on the microstructure of the ink-jet printed active layers and electrical performance. The mobility value of the device with optimized condition was about 0.1-1.0 $cm^2/Vs$ and the on/off current ratio was about $10^6$. Our investigations demonstrate the feasibility of the ink-jet printed oxide TFTs toward successful application to cost-effective and mass-producible displays.

  • PDF

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Equipment Development for Inorganic-Compound Concentration Measurement in a Hydroponic Culture Solution (수경배양액 무기성분농도 측정장치 개발)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun;Park, Jong-Taek;Lee, Seung-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.319-326
    • /
    • 2020
  • BACKGROUND: Measurement equipment was developed for inorganic nutrient concentration inside the hydroponic culture medium with several macro- and micro compositions, and applied for measuring the compositions of conventional medium. METHODS AND RESULTS: Before the equipment development, sonicator and heater were utilized to control temperature around of the module mixing with color reagents and target samples among the inorganic compositions. The measurement module and multi-sampler were also manufactured based on the COMS (Complementary Metal-Oxide Semiconductor) and installed inside the measurement equipment. Concentration of standard solution, value measured by the equipment, standard deviation or measured average value were used for estimating the accuracy and average recall of the equipment. Yamazaki solutions with EC of 0.5, 1.5, and 2.5 dS/m were offered to confirm the equipment accuracy and standard error. CONCLUSION: It was suggested that the developed equipment could be automatically applied for measurement with accuracy of over 96% and standard errors of less than 5% on 12 macro- and micro compositions such as a NO3-N, PO43- or Fe.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Electrical characteristics of p-PEDOT/n-GZO heterojunction (p-PEDOT/n-GZO heterojunction의 전기적 특성)

  • Lee, Jae-Sang;Park, Dong-Hoon;Koo, Sang-Mo;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1332_1333
    • /
    • 2009
  • The electrical properties of an inorganic/organic heterojunction has been investigated by spin coating the p-type polymer poly(3,4 ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS) on an n-type gallium doping zinc oxide (GZO) film. Current-voltage (I-V) characteristics of the fabricated heterojunction diodes have a good rectifying characteristics. The barrier height is calculated 0.8 eV.

  • PDF

Characteristics of ZnO Varistors with Praseodymium Oxide

  • Lee, Sang-Ki;Cho, Sung-Gurl;Shim, Young-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 1999
  • ZnO varistors containing cobalt, praseodymium and calcium oxides were prepared. The current-voltage charcteristics and microstructures of the specimens were investigated with respect to calcium addition and sintering temperature. The potential barrier heights and the carrier densities were estimated from C-V relations. The compatibility of Ag-Pd as an internal electrode for multilayer chip varistor was also examined.

  • PDF

Interface and Crystallinity of 1,4,5,8,9,11-Hexaazatriphenylene-hexanitrile thin films between an Organic and Transparent Conductive Oxide layers

  • Lee, Hyeon-Hwi;Lee, Jeong-Hwan;Kim, Jang-Ju;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.248-248
    • /
    • 2016
  • We have investigated the crystallinity, preferential ordering, and interfacial stability of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin film interconnected with organic/inorganic multilayer. At the region close to the organic-organic interface, HATCN formed low crystalline order with substantial amorphous phase. As film growth continued, HATCN stacked with high crystalline phase. After a sputtering deposition of the indium zinc oxide (IZO) layer on top of HATCN/organic layer, the volume fraction of preferentially ordered HATCN crystals increased without any structural deterioration. In addition, the HATCN surface was kept quite stable by preserving the sharp interface between HATCN and sputtering deposited IZO layers.

  • PDF