• Title/Summary/Keyword: inorganic matter

Search Result 288, Processing Time 0.022 seconds

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Lee, Yeen;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.295-303
    • /
    • 1999
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as a soil conditioner in rice paddy field. In 1997, rice (Oryza sativa B. cv. Dongjinbyeo) crop was cultivated under different application rates of BOF slag at three different places, Inandong Sunchon city, Youjunglee Bosung province, and Nampyung Najoo city. In each paddy field, five treatments, four application rate of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height, number of tillers per hill, leaf area per hill, leaf dry weight, calm dry weight or shoot dry weight per hill were measured five times at the interval of seven days. Chemical contents of rice plants and soil were also measured at the same sampling date Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. Application of BOF slag hardly affected contents of soil organic matter, available phosphate and potassium in soil. Soil pH and contents of Ca, Mg, Fe and $SiO_2$ enhanced as BOF slag rate increased. Enhancement of soil pH by ROF slag treatment appeared to be closely related with increase in soil Ca content. Application tate of $2Mg\;ha^{-1}$ of lime showed almost the same effect, in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag, Fe content in soil decreased sharply as time passed after slag treatment and stabilized more or less at the later sampling date. Contents of inorganic matter in plant such as total nitrogen, phosphate, potassium and Mg were not affected by BOF slag treatment. However, contents of Ca, Fe, and $SiO_2$ in plants increased as slag rate became higher. The growth of rice plants with BOF slag treatment was more or less slower but continued persistently up to the later growth stage, so that growth of plants with BOF slag treatment was almost the same nr even greater than that of control or lime treatment. However, BOF slag rate of $12Mg\;ha^{-1}$ seemed to be too high because all the measurements of plant, growth at this rate showed lower values than those of other treatments at all the sampling dates. Treatments of BOF slag $4Mg\;ha^{-1}$ or $8Mg\;ha^{-1}$ showed higher rough rice yield than other treatments, so that the optimum BOF slag ratein rice paddy field seemed to be in the rage of $4{\sim}8Mg\;ha^{-1}$.

  • PDF

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

Composting of Compostable Wet Household Wastes Using Waste Newspapers as Humidity Amendment (수분개선제로 폐신문지를 이용한 가정쓰레기의 퇴비화)

  • Yun, Eun-Jin;Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2000
  • Because the household garbage had high water contents, it is difficult to compost it without an additive. Therefore, this study was performed to investigate possibility of using the waste newspapers as a humidity conditioner for the household garbage composting. The maximum temperature was $66.0^{\circ}C$ in spring, $69.2^{\circ}C$ in summer, $60.9^{\circ}C$ in fall and $56.0^{\circ}C$ in winter for composting periods. The seasonal pH value reached around 8.5 after 1 week and then repeated fluctuation at the narrow range in spring and fall, while it was stabilized at the range of $8{\sim}9$ after increasing to 8.5 after 1 week in winter. The water content was reduced little in winter, while decreased significantly in the other seasons. The water content after 8 weeks was 22.2% in spring, 47.6% in summer, 25.5% in fall and 72.5% in winter. The mass was reduced rapidly during the first week of each season, but it did not show much decrease. The volume reduced after 8 weeks to 59%, 32%, 27%, and 34% in spring, summer, fall and winter respectively. Organic matter content decreased over the four seasons. Nitrogen contents were in the range of 0.7% to 2.2% during the four seasons. The contents of inorganic compounds based on dry matyter were in the range of $0.94{\sim}2.59%\;P_2O_5$, $1.23{\sim}1.87%\;CaO$, $0.37{\sim}0.46%\;MgO$, $0.55{\sim}1.98%\;K_2O$. Concentration of heavy metals(Hg, Cd, Pb, Cu, Cr, Zn, As) based on dry matter were less than the limiting value of the by-product compost.

  • PDF

Distribution of Phosphate Fractions in Greenhouse Soils Located on Southwest Region in Korea (한국 남서(南西) 지역(地域) 시설(施設) 재배지(栽培地) 토양(土壤)중 인산염(燐酸鹽) 형태별(形態別) 함량(含量))

  • Suh, Jang-Sun;Song, Yo-Sung;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.270-277
    • /
    • 1995
  • The phosphate fractions and their relationships with other soil characteristics in greenhouse soils located on the southwest region in Korea were studied to demonstrate the possibility of the application of phosphate solubilizing microorganisms. The average contents of organic matter of 4.0% and exchangeable K, Ca, Mg of 1.16, 3.4, and $1.2cmol\;kg^{-1}$ respectively were higher than the aiming level for improvement of low fertile soil. Especially, available $P_2O_5$ of $1,193mg\;kg^{-1}$ was far more than the aiming level. The distribution of greenhouse soils classified by their total P contents was 46.1% for the range of $1,000{\sim}2,000mg\;kg^{-1}$, 29.6% for $2,000{\sim}3,000mg\;kg^{-1}$, and 12.9% for $3,000{\sim}4,000mg\;kg^{-1}$. And the soils containing more than $1,000mg\;kg^{-1}$, available $P_2O_5$ occupied 63.0% of the examined soils. The main forms of inorganic phosphates in greenhouse soils were Ca-P and Fe-P. The P fractions compared to total P were significantly correlated to soil pH, while available P was not so. Available phosphate was significantly correlated with the contents of organic matter and nitrogen, which are closely related to soil microbial activity, at the probability level of less than 1%.

  • PDF

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF

Studies on the effect of Phosphorus application and availability of silicate in Basalt soil applied Lime (현무암토양(玄武岩土壤)에서 수도(水稻)에 대(對)한 석회(石灰) 및 인산시용효과(燐酸施用効果))

  • Choeng, Hyun-Sik;Kim, Jung-Jae;Han, Sae-Gee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.49-53
    • /
    • 1977
  • In order to know the effect of lime application on the phosphorus and silicate, lime and phosphorus were applied in the soil where phosphorus concentration was low and pH 5.4 The results are as follows 1. The filled grain ratio increases by applying the lime in moderate quantity, conversely the large amount of lime reduced the number of panicles per hill and number of spikelets per panicle. 2. The phosphorus application increased the panicle number, grain number and filled grain ratio. Similarly the yield was also significantly increased. 3. Among the inorganic matter of plant absorbed at the heading time the nitrogen contents was highly correlated with the number of heads, grain number per head and yield, while contents of $P_2O_5$ and $SiO_2$ were significantly correlated with the grain number maturerate and yield respectively. 4. Under the lime application the silica of soil was partly correlated with yield and yield components. But there was a significant difference between contents of $P_2O_5$ in soil and yield componentas. And in the plot of double application of neutralizing lime, significance of 1% level was shown between the $P_2O_5$ in soil and the panicles number and grain number respectively, where as significance of 5% with yield. 5. The phosphorus concentration in soil was gradually increased by the increment of lime application. Also the rate of available silicate in soil was considerably increased by the increment of lime application. That is, the silicated concentration in soil was 86ppm with lime and 59ppm without lime.

  • PDF

Changes in Characteristics of Bark and Piggery Manure By-Product Fertilizers During the Composting (수피${\cdot}$돈분 부산물 비료의 부숙단계별 특성 변화)

  • Yang, Jae-E;Park, Chang-Jin;Yong, Seok-Ho;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.372-377
    • /
    • 1999
  • Objective of this research was to draw the basic criteria of the compost maturity evaluation, by assessing the stability of chemical and physical properties of the bark and piggery manure byproduct composts during the composting. Colors of the mature composts were black and dark brown for the bark and piggery manure by-product composts, respectively. Good earthy odor was detected for both by-product composts after approximately 40 days composting, by which odors of the original raw materials were disappeared. pH and EC of the mature bark: compost were stabilized at 6.5 and 1dS/m, respectively. The respective values for the piggery compost were stabilized at 7.2 and 6dS/m. Organic matter contents were decreased with time to be stabilized at about 60% at the end of composting. During composting, total N contents of the bark and piggery composts were maintained at $1.1{\sim}1.5%$, and $1.5{\sim}2.2%$, respectively. For both fertilizers, $NH_4-N$ contents were increased at the initial stage bur. decreased after the middle stages of decomposition, resulting in the increase of $NO_3-N$ contents. Total inorganic N contents were increased with time. C/N ratios of both mature composts were stabilized at $25{\sim}27$. CEC of the bark compost was increased logarithmically with time and that of mature compost was 87cmol(+)/㎏. CEC of the piggery manure compost was hyperbolic function with rime and reached at 70cmol(+)/㎏ at the mature stage. Crude fiber analysis indicated that relative contents of lignin were increased with composting by compensating for the decreases of cellulose and hemicellulose contents.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.