• Title/Summary/Keyword: inorganic materials

Search Result 1,808, Processing Time 0.037 seconds

Fabrication of Thin Film Inductors Using Ni-Zn Ferrite Core (Ni-Zn 페라이트 박막을 이용한 박막 인덕터의 제조)

  • Kim, Min-Heung;Yeo, Hwan-Gun;Hwang, Gi-Hyeon;Lee, Dae-Hyeong;Yun, Ui-Jun;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.6 no.1
    • /
    • pp.22-28
    • /
    • 1996
  • 고주파 이동통신의 효용이 증가할수록 고주파 회로에 들어가는 부품들의 소형화가 중요한 과제로 대두되고 있다. 인덕터는 전자회로에 이용되는 주요 부품의 하나이며, 현재 교주파용 소형 인덕터를 박막화하려는 시도가 진행중이다. 본 연구에서 열산화시킨 Si(100)기판위에 성공적으로 박막형 인덕터를 제조하였다. Core 물질로는 ion beam sputtering 법으로 증착한 Ni-Zn 페라이트와 PECVD법으로 증착한 SiO2를 사용하였다. 고온산화분위기의 박막 증착과정을 고려하여 귀금속류인 Au를 전극으로 이용하였으며, life-off법으로 미세회로를 구현하였다. 상하부 전극의 안정적인 연결을 위하여 2차 전극배선 전에 via를 채워넣었다. 제조된 박막 인덕터의 고주파 특성은 network analyzer로 측정한 후 HP사의 Mecrowave Design System으로 분석하였다.

  • PDF

Controlling Preferred Orientation of ITO Thin Films by RF-Magnetron Sputtering Method

  • Park, Ju-O;Kim, Jae-Hyung;Lee, Joon-Hyung;Kim, Jeong-Joo;Cho, Sang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.818-821
    • /
    • 2003
  • Sn-doped $In_{2}O_{3}$ (ITO) thin film is one of the materials widely on research not only in the academic fields but also in industrial fields because of their transparency, high conductivity and good adhesion characteristics on substrate. ITO thin films are usually preferred oriented to one of the (222), (400), and (440) planes during crystallization process, which is dependent on processing variables. The preferred orientation affects electrical, optical and etching properties of the films. In this study, thin films of preferred oriented in different orientation were fabricated by controlling processing variables. The crystallization behavior, grain size, surface roughness, transparency and electrical properties of the thin films in different orientation were examined.

  • PDF

Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 pH와 온도의 영향)

  • Shin, Jun-Won;Kim, You-Sung;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.265-269
    • /
    • 2007
  • The effects of experimental variables for the electrochemical reduction of carbon dioxide by Carbon Monoxide Dehydrogenase (CODH) were investigated. It shows the pH optimum at 6.3 where the feasibility of electro-chemical reduction and the stability of CODH compromise each other. The optimum temperature for the reduction was at $60^{\circ}C$ where the enzyme shows the optimum activity although the solubility of carbon dioxide decreases as increasing temperature.

Inorganic and Organic Nano Materials and Devices

  • Li, G.P.;Bachman, Mark
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.4.1-4.1
    • /
    • 2009
  • The dream of futurists andtechnologists is to build complex, multifunctional machines so small that theycan only be seen with the aid of a microscope. The unprecedented technologyadvancements in miniaturizing integrated circuits on semiconductors, and theresulting plethora of sophisticated, low cost electronic devices demonstratethe impact that micro/nano scale engineering can have when applied only to thearea of electrical and computer engineering. Emerging research efforts indeveloping organic and inorganic nano materials together with using micro/nanofabrication techniques for implementing integrated multifunctional devices hopeto yield similar revolutions in other engineering fields. By cross linking theindividual engineering fields through micro/nano technology, various organicand inorganic materials and miniaturized system devices can be developed thatwill have future impacts in the IT and life science applications. Yet to buildthe complex micromachines and nanomachine of the future, engineering will needto develop the technology capable of seamlessly integrating these materials andsubsystems together at the micro and nano scales. The micromachines of thefuture will be “integrated nanosystems,” complex devices requiring the integration of multiple materials,phenomena, technologies, and functions at the same platform. To develop thistechnology will require great efforts in materials science and engineering, infundamental and applied sciences. In this talk, we will first discuss thenature of micro and nanotechnology research for IT and life sciences, and thenintroduce selected current activities in micro and nanotechnology research fororganic and inorganic materials and devices. The newly developed micro/nanofabrication processes and devices, combined with in-depth scientificunderstandings of materials, can lead to rapid development of next generationsystems for applications in IT and life sciences.

  • PDF

Stress Determination in Epitaxial Lead Titanate Films by Asymmetric X-ray Diffraction Method

  • Uchida, Hiroshi;Kiguchi, Takanori;Wakiya, Naoki;Shinozaki, Kazuo;Mizutani, Nobuyasu
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.385-389
    • /
    • 2000
  • Residual stresses in epitaxial films were measured by X-ray diffraction method. Lattice strains of the (hkl) planes measured along particular Ψ-angles were converted to the in-plane stress according to the equation of stress-strain tensor conversion. Residual tensile stresses were observed in epitaxial PbTiO$_3$ films deposited on (100) SrTiO$_3$ substrate. Tensile stresses approximately 0.9 GPa were measured in Pb-rich films, while it increased to approximately 2.0 GPa with the decreasing of Pb content in the case of Pb-poor films, which ascribed to the formation of lead and oxygen vacancies (expressed as x in Pb$_1-x$TiO$_3-x$).

  • PDF

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.