• Title/Summary/Keyword: inorganic flame retardant

Search Result 44, Processing Time 0.027 seconds

Effect of Eco-friendly Inorganic Flame Retardants on Mechanical and Flame-Retardant Properties of EPDM Compound

  • Do, Jong Hwan;Kim, Do Young;Seo, Kwan Ho
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • In this study, the mechanical and flame-retardant properties of ethylene-propylene-diene-termonomer (EPDM) based rubber compounds and various other environmentally friendly inorganic flame retardants were investigated. Alumina trihydrate (ATH) and magnesium hydroxide (MDH) were used as inorganic flame retardants. The mechanical properties after thermal oxidation aging and the flame-retardant properties of the EPDM compounds were measured using a moving die rheometer, a universal testing machine, a compression set, and a UL 94 V flammability test. We focused on how the properties were affected by the type and amount of flame retardants. The results demonstrated that the optimal mechanical and flame-retardant V-0 grade properties were obtained at an ATH content of 200 phr.

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.

High Flame Retardancy and High-strength of Polymer Composites with Synergistically Reinforced MOSw and EG

  • Kim, Chowon;Lee, Jinwoo;Yoon, Hyejeong;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.359-364
    • /
    • 2022
  • Polymers are inherently vulnerable to flame, which limits their application to various high-tech industries. In addition, environmental regulations restrict the use of halogen-based flame retardants which has best flame-retardant effect. There are inorganic flame retardants and phosphorous flame retardants as representative non-halogen-based flame retardants. However, high content of flame retardants is required to impart high flame retardancy of the polymers, and this leads to a decrease in mechanical properties. In this research, a new approach for inorganic flame retardant-based polymer composites with high mechanical properties and flame retardancy was suggested. Inorganic flame retardants called as magnesium oxysulfate whisker (MOSw) were used in this research. MOSw can extinguish fire by releasing water and non-combustible gases when exposed to flame. In addition, they have reinforcing effect when added into the polymer with its high aspect ratio. Expandable graphite (EG) was used as a flame-retardant supplement by helping to form a more dense char layer. Through this research, it is expected that it can be applied to various industries requiring flame retardancy such as automobile, and architecture by replacing halogen-based flame polymer composites.

Effect of Treatments with Flame-retardant on Flame-resistance and Tensile Strength of Paper (난연 처리가 종이의 난연성 및 인장강도에 미치는 영향)

  • Song, Han-Kyu;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.61-67
    • /
    • 2006
  • The effect of several inorganic flame-retardants such as ammonium phosphate, ammonium sulfate, aluminum hydroxide and antimony trioxide on the flame-retardant property and tensile strength of paper has been investigated. Flame-retardants were used preferably as a dry powdered mixture and added to the furnish. Both dipping and coating treatments were employed to apply flame-retardants to paper Flame-retardant paper was manufactured by treatment of $5{\sim}30%$ flame-retardants by weight of the paper on a dry weight. Paper's flame-retardant property and tensile strength were examined by comparison of char length and tensile index. As dosages of flame-retardant chemicals increased, flame-retardant property was improved but tensile index was decreased.

Fire Resistance Properties of Chloroprene Rubber containing Inorganic Flame Retardant

  • Sung, Il Kyung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.279-285
    • /
    • 2015
  • This study examined the mechanical properties and the flame retardant properties of CR rubber containing inorganic flame retardant with various contents of aluminium trihydroxide (ATH, $Al(OH)_3$). The content of aluminium trihydroxide was added in 0, 30, 50, 70 and 100 phr for T1~T5 samples. It was found that increasing the amount of addition over 30 phr resulted in decreasing the mechanical properties. On the other hand in oxygen index measurements T1 sample showed a value of 38.6%, indicating the improvement of flame retardant properties showed a value of 49.7~64.2%. In case of burn test, it was confirmed that CR rubber containing over ATH 50phr content showed performance corresponding to that of first grade fire-resistance.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants (무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

Study on the Smoke Density Characteristics of Flame Retardant Sol Manufactured by a Sol-gel Method (졸-겔법으로 제조된 방염제졸의 연기밀도 특성에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • In this study, a non-halogen type organic-inorganic hybrid flame retardant sol, which can impart flame resistance to synthesize silicate of inorganic material and silane coupling agent of organic material by a sol-gel method, were newly manufactured. The addition of flame retardant will prevent loss of life in a fire because smoke from the flammability of interior finishing materials used as the construction materials poses a major danger. The smoke density measurement standard based on flame retardant performance standards, experiments were conducted according to the test equipment and procedures of ASTM E 662. The non-flaming mode experiment and the flaming mode experiment were conducted to confirm the performance of the manufactured flame retardant sol. As a result, the manufactured flame retardant sol improved the physical properties and heat resistance of existing flame retardants, and decreased the smoke production of the fire. Therefore, it may be possible to reduce the damage caused by smoke and expand the applications to various interior finishing materials.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Study on the Performance Characteristics of Organic-Inorganic Hybrid Flame Retardants (유-무기 하이브리드 방염제의 성능특성에 관한 연구)

  • Cho, Kyeong-Rae;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.12-19
    • /
    • 2017
  • The present paper is a study on the performance characteristics of organic-inorganic hybrid flame retardants. MDF plywood has been used, that are being used for the interior decoration of building structures, to make the samples for experiment according to the existing or non-existing treatment of organic-inorganic hybrid flame resistants. Later, the experiment on the measurement of flame retardant performance using a $45^{\circ}$ flammability tester and the experiment on the measurement of combustion characteristic using a cone calorimeter have been proceeded to confirm the performance characteristic of organic-inorganic hybrid flame retardants. From the result of experiments, it has been confirmed that both organic-inorganic hybrid flame retardants have merits of inorganic and organic substances, and that heat resistance, durability and adhesiveness have been largely improved. The performance on the flame retardant has also appeared with excellent effect such as the reduced generation of combustion gas and the decreased generation of smoke.