• 제목/요약/키워드: inorganic carbon

검색결과 598건 처리시간 0.028초

탄소나노튜브 강화 나노복합재료의 연구현황 (Research Status on the Carbon Nanotube Reinforced Nanocomposite)

  • 차승일;김경태;이경호;모찬빈;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2003
  • Carbon nanotubes(CNTs), since their first discovery, have been considered as new promising materials in various fields of applications including field emission displays, memory devices, electrodes, NEMS constituents, hydrogen storages and reinforcements in composites due to their extra-ordinary properties. The carbon nanotube reinforced nanocomposites have attracted attention owing to their outstanding mechanical and electrical properties and are expected to overcome the limit of conventional materials. Various application areas are possible for carbon nanotube reinforced nanocomposites through the functionalization of carbon nanotubes. Carbon nanotube reinforced polymer matrix nanocomposites have been fabricated by liquid phase process including surface functionalization and dispersion of CNTs within organic solvent. In case of carbon nanotube reinforced polymer matrix nanocomposites, the mechanical strength and electrical conducting can be improved by more than an order of magnitude. The carbon nanotube reinforced polymer matrix nanocomposites can be applied to high strength polymers, conductive polymers, optical limiters and EMI materials. In spite of successful development of carbon nanotube reinforced polymer matrix nanocomposites, the researches on carbon nanotube reinforced inorganic matrix nanocomposites show limitations due to a difficulty in homogeneous distribution of carbon nanotubes within inorganic matrix. Therefore, the enhancement of carbon nanotube reinforced inorganic nanocomposites is under investigation to maximize the excellent properties of carbon nanotubes. To overcome the current limitations, novel processes, including intensive milling process, sol-gel process, in-situ process and spark plasma sintering of nanocomposite powders are being investigated. In this presentation, current research status on carbon nanotube reinforced nanocomposites with various matrices are reviewed.

  • PDF

활성탄을 이용한 톳(Sargassum fusiforme) 자숙농축액 내 무기비소 저감 기술 (Removal of Inorganic Arsenic from Steamed Hijiki Sargassum fusiforme Concentrate Using Activated Carbon)

  • 강은혜;이가정;조미라;유홍식;손광태;윤민철
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.561-567
    • /
    • 2021
  • The edible sargasso seaweed hijiki Sargassum fusiforme is known to have high concentration of arsenic, which is a threat to human health, particularly due to inorganic arsenic. In this study, various methods were used to remove inorganic arsenic from steamed hijiki concentrate. The highest concentration of arsenate [As(V)] in both raw and processed hijiki during steamed hijiki manufacturing process was within the range of 8.213-14.356 mg/kg, and it is a potential source of inorganic arsenic, which can result in re-contamination and cause environmental pollution. The removal efficiencies of the various removal methods were within the range of 57.3-83.4%, and 19.0% reduction was achieved using activated carbon and alginate bead. Further, activated carbon showed the best adsorption effect of inorganic arsenic. Therefore, we suggest that activated carbon is a suitable efficient method for removing inorganic arsenic and has low operational costs in field applicability.

무기성 순환자원의 수소 활성화 및 이산화탄소 분해 (Hydrogen Activation and Carbon Dioxide Decomposition Using An Inorganic Recycling Resource)

  • 박영구;고재철;전제열;박준석
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.483-490
    • /
    • 2009
  • This research was conducted to estimate the characteristics of carbon dioxide decomposition using an inorganic sludge. The inorganic sludge was composed of high amount (66.8%) of $Fe_2O_3$. Hydrogen could be reduced with 0.247, 0.433, 0.644, and 0.749 at 350, 400, 450, and $500^{\circ}C$, respectively. The carbon dioxide decomposition rates at 250, 300, 350, 400, 450, and $500^{\circ}C$ were 32, 52, 35, 62, 75, and 84%, respectively. High temperature led to high reduction of hydrogen and better decomposition of carbon dioxide. The specific surface area of the sludge after hydrogen reduction was higher than that after carbon dioxide decomposition. The specific surface area of the sludge was more decreased with increasing of temperature.

이산화탄소의 전기화학적 변환 (Electrochemical Conversion of Carbon Dioxide)

  • 송지은;신운섭
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.131-141
    • /
    • 2009
  • 이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.

보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능 (Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation)

  • ;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

열처리 조건이 무\ulcorner향성 규소강판의 절연피막에 미치는 영향 (Effects of Hear Teratment on the Insulation Layer of Non-oriented Silicon Steel Sheets)

  • 유영종;신정철
    • 한국표면공학회지
    • /
    • 제22권3호
    • /
    • pp.109-117
    • /
    • 1989
  • The effect of heft treatment on the characteristic properties of insulation layer is studied for two kinds of non-oriented silicon steels, which were insulation-coates with various kinds of inorganic and inorganic-organic complex coating solutions. In addition, how the carbon contained in the insulation layer would affect the carbon content and the magnetic properties of the steel substrates is examined. Lower temperature heat treftment ($480^{\circ}C$ for 0.5hr) is found to render morw favorable surface qualities, wheras higher temperature heat treatment ($790^{\circ}C$ for 2hr) better core loss due to grin growt occurred during the heat treatment. Decarburization of the steel substrate is also found unaffectrd by the presence of carbon in the insulation layer.

  • PDF

잔골재 치환율별 저탄소 무기결합재를 사용한 모르타르의 유동 및 강도 특성에 관한 실험적 연구 (An Experimental Study on the Flowing and Strength Properties of Mortar using Low Carbon Inorganic Binder by Sand Replacement Ratio)

  • 배상우;이윤성;이강필;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.63-64
    • /
    • 2011
  • This study is about the mortar in which fine aggregate is substituted by low-carbon eco-friendly inorganic composite prepared by addition of alkali accelerator in industrial by-products such as blast furnace slag, red mud and silica fume as a replacement for cement. Results of experiments on flow and strength properties in mortar of inorganic composite according to replacement rate of fine aggregate showed that amount of air and table flow decreased as replacement rate of fine aggregate about inorganic composite got higher. Also, it's shown that the compressive strength was the highest at replacement rate 50% of fine aggregate about inorganic composite.

  • PDF

일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 전극재료와 전위의 영향 (Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase)

  • 신준원;김유성;송지은;이상희;이상필;이호준;임미란;신운섭
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.165-169
    • /
    • 2008
  • CODH(Carbon Monoxide Dehydrogenase)에 의한 이산화탄소 환원에 있어서 작업전극을 유리탄소전극을 사용한 경우와 금전극을 사용한 경우를 비교하여 그 영향을 관찰하였다. 금전극을 사용한 경우에는 수소발생과 섞이기 때문에 전기분해의 전위를 잘 선택해야 효율적인 이산화탄소의 환원 반응을 관찰할 수 있는데 반하여, 유리탄소전극은 금전극보다 수소 환원에 대한 과전압이 크기 때문에 -650 mV vs. NHE 까지도 중성수용액에서 수소발생 없이, 효율적인 이산화탄소의 환원을 관찰할 수 있었다. CODH를 이용한 이산화탄소의 환원에는 가해주는 전기분해 전위가 큰 영향을 미침을 알 수 있었는데, $-570{\sim}600\;mV$ vs. NHE 근처가 가장 효율적임을 알 수 있었고 이보다 더 음의 전위를 걸어주었을 때는 효소활성의 감소 및 수소발생이 복합적으로 영향을 미쳐 일산화탄소 생성의 전류효율이 급격히 감소함을 알 수 있었다.

Magnetite와 무기성 슬러지의 이산화탄소 분해 특성 (Decomposition Characteristics of Carbon Dioxide Using Magnetite and Inorganic Sludge)

  • 박준석;전제열;박영구
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.344-352
    • /
    • 2010
  • Magnetite and inorganic sludge were mainly composed of $Fe_2O_4$ and $Fe_2O_3$, respectively. Initial specific surface areas of magnetite and inorganic sludge were 130 $m^2$/g and 31.7 $m^2$/g. $CO_2$ decomposition rate for inorganic sludge was increased with temperature. Maximum $CO_2$ decomposition rates were shown 89% for magnetite at $350^{\circ}C$ and 84% for inorganic sludge at $500^{\circ}C$. Specific surface area for magnetite was not varied significantly after $CO_2$ decomposition. However, specific surface area for inorganic sludge was greatly decreased from initial 130 $m^2$/g to approximately 50~60 $m^2$/g after reaction. Therefore, it was estimated that magnetite could be used for $CO_2$decomposition for a long time and inorganic sludge should be wasted after $CO_2$ decomposition reaction.