• Title/Summary/Keyword: innate immunity

Search Result 380, Processing Time 0.028 seconds

Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Lillehoj, Hyun S.;Han, Jae Yong;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1516-1524
    • /
    • 2018
  • Objective: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Effects of Dietary Mealworm Tenebrio molitor Larvae and Black Soldier Fly Hermetia illucens Larvae on Pacific White Shrimp Litopenaeus vannamei: Innate Immune Responses, Anti-oxidant Enzyme Activity, Disease Resistance against Vibrio parahaemolyticus and Growth (사료 내 갈색거저리(Tenebrio molitor) 유충과 동애등에(Hermetia illucens) 유충의 첨가에 따른 흰다리새우(Litopenaeus vannamei)의 비특이적 면역력, 항산화력, Vibrio parahaemolyticus에 대한 저항성 및 성장 효과)

  • Shin, Jaehyeong;Shin, Jaebeom;Eom, Gunho;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.624-633
    • /
    • 2021
  • This study was conducted to determine the supplemental effects of two insect meals, mealworm (MW) and black soldier fly (BSF), with high or low lipid levels in diets, on Pacific white shrimp Litopenaeus vannamei. Sardine and tuna by-product meals were used as the fish meal source in a control (Con) diet. The fish meals were replaced with MW, defatted MW (deMW), BSF or defatted BSF (deBSF), respectively. The shrimp (body weight: 0.47 g) were stocked into 20 acryl tanks (215 L) and fed the diets six times a day. After 45 days of the feeding trial, the shrimp that were fed insect meals had significantly higher phenoloxidase and superoxide dismutase activities than the shrimp fed Con diet. The gene expressions of prophenoloxidase, crustin and penaeidine-3c in shrimp hepatopancrease were also higher in shrimp that were fed the insect diets, regardless of defatting than those in shirmp that were fed Con diet. The survival against Vibrio parahaemolyticus was higher in shrimp that were fed the diets containing defatted insect meals than in shrimp that were fed Con diet. These results indicate that MW and BSF, regardless of lipid levels, could be good protein sources for the enhancement of innate immunity and anti-oxidant capacity of the shrimp.

Aging of Immune System (면역 반응체계의 노화)

  • Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.817-823
    • /
    • 2019
  • Immune system provides defense integrity of body against external invaders. In order to accomplish the important defending role immune system is composed of many different components which are regenerated continuously during lifespan. The key components are professional killing cells such as macrophage, neutrophil, natural killer cell, and cytotoxic T cell and professional blocking molecule, antibody, which is produced by plasma cell, the terminal differentiated B cell. Immune response is orchestrated harmoniously by all these components mediated through antigen presenting cells such as dendritic cells. Immune responses can be divided into two ways: innate immune response and adaptive immune response depending on induction mechanism. Aging is a broad spectrum of physiological changes. Likewise other physiological changes, the immune components and responses are wane as aging is progressing. Immune responses become decline and dysregulating, which is called immunosenescense. Immune components of both innate and adaptive immune response are affected as aging progresses leading to increased vulnerability to infectious diseases. Numbers of immune cells and amounts of soluble immune factors were decreased in aged animal models and human and also functional and structural alterations in immune system were reduced and declined. Cellular intrinsic changes were discovered as well. Recent researches focusing on aging have been enormously growing. Many advanced tools were developed to bisect aging process in multi-directions including immune system area. This review will provide a broad overview of aging-associated changes of key components of immunity.

Inhibition of caspase-1-dependent apoptosis suppresses peste des petits ruminants virus replication

  • Lingxia Li;Shengqing Li;Shengyi Han;Pengfei Li;Guoyu Du;Jinyan Wu;Xiaoan Cao;Youjun Shang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.55.1-55.12
    • /
    • 2023
  • Background: Peste des petits ruminants (PPR), caused by the PPR virus (PPRV), is an acute and fatal contagious disease that mainly infects goats, sheep, and other artiodactyls. Peripheral blood mononuclear cells (PBMCs) are considered the primary innate immune cells. Objectives: PBMCs derived from goats were infected with PPRV and analyzed to detect the relationship between PPRV replication and apoptosis or the inflammatory response. Methods: Quantitative real-time polymerase chain reaction was used to identify PPRV replication and cytokines expression. Flow cytometry was conducted to detect apoptosis and the differentiation of CD4+ and CD8+ T cells after PPRV infection. Results: PPRV stimulated the differentiation of CD4+ and CD8+ T cells. In addition, PPRV induced apoptosis in goat PBMCs. Furthermore, apoptosis and the inflammatory response induced by PPRV could be suppressed by Z-VAD-FMK and Z-YVAD-FMK, respectively. Moreover, the virus titer of PPRV was attenuated by inhibiting caspase-1-dependent apoptosis and inflammation. Conclusions: This study showed that apoptosis and the inflammatory response play an essential role in PPR viral replication in vitro, providing a new mechanism related to the cell host response.

Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation

  • Sehyeon Jang;San Kim;Se Jeong Kim;Jun Young Kim;Da Hye Gu;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Ran Yoon;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.644-653
    • /
    • 2024
  • Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.

Comparison of Overall Immunity Levels among Workers at Grape Orchard, Rose Greenhouse, and Open-Field Onion Farm

  • Maharjan, Anju;Gautam, Ravi;Jo, JiHun;Acharya, Manju;Lee, DaEun;Pramod, Bahadur KC;Gim, Jin;Sin, Sojung;Kim, Hyocher;Kim, ChangYul;Lee, SooYeon;Lee, SooJin;Heo, Yong;Kim, HyoungAh
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.248-254
    • /
    • 2022
  • Background: Occupational hazards in crop farms vary diversely based on different field operations as soil management, harvesting processes, pesticide, or fertilizer application. We aimed at evaluating the immunological status of crop farmers, as limited systematic investigations on immune alteration involved with crop farming have been reported yet. Methods: Immunological parameters including plasma immunoglobulin level, major peripheral immune cells distribution, and level of cytokine production from activated T cell were conducted. Nineteen grape orchard, 48 onion open-field, and 21 rose greenhouse farmers were participated. Results: Significantly low proportion of natural killer (NK) cell, a core cell for innate immunity, was revealed in the grape farmers (19.8±3.3%) in comparison to the onion farmers (26.4±3.1%) and the rose farmers (26.9±2.5%), whereas cytotoxic T lymphocyte proportion was lower in the grape and the onion farmers than the rose farmers. The proportion of NKT cell, an immune cell implicated with allergic response, was significantly higher in the grape (2.3±0.3%) and the onion (1.6±0.8%) farmers compared with the rose farmers (1.0±0.4%). A significantly decreased interferon-gamma:interleukin-13 ratio was observed from ex vivo stimulated peripheral blood mononuclear cells of grape farmers compared with the other two groups. The grape farmers revealed the lowest levels of plasma IgG1 and IgG4, and their plasma IgE level was not significantly different from that of the onion or the rose farmers. Conclusion: Our finding suggests the high vulnerability of workplace-mediated allergic immunity in grape orchard farmers followed by open-field onion farmers and then the rose greenhouse farmers.

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene

  • Pruthviraj, D.R.;Usha, A.P.;Venkatachalapathy, R.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.315-320
    • /
    • 2016
  • Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity.

Dietary Supplementation of Citrus and Fermented Citrus By-product for Juvenile Red Seabream Pagrus major at Low Water Temperature (저수온기(13-15℃) 치어기 참돔(Pagrus major) 사료 내 비타민 C 대체제로써의 감귤착즙박 및 발효감귤착즙박의 이용 가능성)

  • Lee, Chorong;Kim, Youjeong;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.454-458
    • /
    • 2015
  • This study compared the effects of dietary supplementation of citrus by-product (CBP) and CBP fermented with Bacillus subtilis (F-CBP) on growth performance, feed utilization, intestinal histology and innate immunity of red seabream Pagrus major with three commercial immune-boosting products. The six experimental diets were supplemented with L-ascorbyl-2-polyphosphate (LAPP; the control diet), CBP or F-CBP at a concentration of 100 mg vitamin C equivalent/kg diet or one of three commercial immune boosters. The Experimental diets were fed to triplicate groups of 17 fish (initial body weight, 116 g) for 8 weeks. The water temperature during the feeding trial was maintained at $13-15^{\circ}C$. Growth and feed utilization did not differ significantly among the six dietary treatments, nor did the phagocytic activity, superoxide dismutase or total immunoglobulin concentrations. However, myeloperoxidase activity was significantly higher in the CBP groups. For the intestinal histology, the intestine diameter, villi and enterocyte heights and number of goblet cells did not differ significantly among groups. Therefore, CBP or F-CBP can be used as a valuable eco-friendly byproduct in diets for fishes including red seabream to maintain their normal growth and health.