• Title/Summary/Keyword: innate immune

Search Result 550, Processing Time 0.037 seconds

Pathogenesis and Host Interaction of Foot-and-mouth Disease (구제역의 병인론과 숙주와의 상호작용)

  • Park, Jong-Hyeon;Lee, Kwang-Nyeong;Kim, Su-Mi;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.113-121
    • /
    • 2011
  • Foot-and-mouth disease (FMD) is a severe vesicular disease of cloven-hoofed animals including domesticated ruminants and pigs. Acute clinical signs may be mild in sheep and goats but are associated with lameness in pigs and mouth lesions with vesicles in cattle. The required condition for a successful pathogen appears to be the ability to counteract both the host innate and adaptive immune response. FMD virus (FMDV) inhibits the induction of antiviral molecules and interferes with the secretory pathway in the infected cell. The surface expression of Major Histocompatibility Complex (MHC) class I molecules is reduced in infected cells. Thus, the ability of the host to recognize and eliminate virus infected cells is decreased. Furthermore, FMDV infection results in a rapid, but transient lymphopenia, reducing the number of T and B cells, and affecting T cell function. The virus appears to premature apoptosis-mediated cell death because it has a very short replication cycle and is able to rapidly produce large amounts of virus. FMDV engages the host protective response at multiple steps to ensure its effective replication and pathogenesis. This review describes the recent pathological and immunological studies to overcome the powerful abilities of FMDV to counteract defense mechanism of host.

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.

Induction of the Neutrophil Migration in Normal Subjects due to Asthmatic Bronchoalveolar Lavage Fluid (BALF)

  • Lee, Ji-Sook;Choi, Eugene;Yang, Eun Ju;Lee, Na Rae;Baek, Seung Yeop;Kim, Eun Jeong;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.111-116
    • /
    • 2014
  • Human neutrophils play an essential role in the innate immune response and are involved in the pathogenesis of the severe and corticosteroid-resistant asthma. Asthma is characterized by an infiltration of inflammatory cells into the lung and by a cytokine release. The aim of this study is to investigate the effects of a bronchoalveolar lavage fluid (BALF) on the chemotaxis and apoptosis of neutrophils which were isolated from healthy subjects. The BALF of subjects with asthma induces the blood neutrophil chemotaxis in the opposite of that in normal subjects. The IL-8, IL-6, and monocyte chemoattractant protein-1 (MCP-1) levels in BALF were higher in subjects with asthma than in normal subjects. The BALF of normal and asthmatic subjects has no effect on neutrophil apoptosis of BALF. MCP-1 delays the constitutive apoptosis of normal blood neutrophils, but has no effect in normal BALF neutrophils. These results may indicate that inflammatory factors secreted by the lung tissue of patients with asthma trigger the neutrophil chemotaxis and also induce the neutrophil dysregulation.

Peptidoglycans Promotes Human Leukemic THP-1 Cell Apoptosis and Differentiation

  • Wang, Di;Xiao, Pei-Ling;Duan, Hua-Xin;Zhou, Ming;Liu, Jin;Li, Wei;Luo, Ke-Lin;Chen, Jian-Jun;Hu, Jin-Yue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6409-6413
    • /
    • 2012
  • The innate immune system coordinates the inflammatory response to pathogens. To do so, its cells must discriminate self from non-self utilizing receptors that identify molecules synthesized exclusively by microbes. Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, they have evolved to recognize conserved products unique to microbial metabolism. These include lipopolysaccharide (LPS), lipotechoic acids, and peptidoglycans (PGN). We show here that TLRs, including TLR2, are expressed on the THP-1 human leukemia cell line. Activation of TLR2 signaling in THP-1 by PGN induces the synthesis of various soluble factors and proteins including interleukin-$1{\beta}$, interleukin-8 and TNF-${\alpha}$ and apoptosis of THP-1 with PGN dose and time dependence. Moreover, in this study we show that PGN induces apoptosis of THP-1 cells in a TNF-${\alpha}$-dependent manner. These findings indicate that TLR2 signaling results in a cascade leading to tumor apoptosis and differentiation, which may suggest new clinical prospects using TLR2 agonists as cytotoxic agents in certain cancers.

Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

  • Go, Ahreum;Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.481-486
    • /
    • 2013
  • Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents.

Polymorphism of NLRP3 Gene and Association with Susceptibility to Digestive Disorders in Rabbit

  • Yang, Yu;Zhang, Gong-Wei;Chen, Shi-Yi;Peng, Jin;Lai, Song-Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • NLR family pyrin domain containing 3 (NLRP3) is a key component of the inflammasome, whose assembly is a crucial part of the innate immune response. The aim of the present study was to evaluate the association between exon 3 polymorphisms of NLRP3 and the susceptibility to digestive disorders in rabbits. In total, five coding single-nucleotide polymorphisms (cSNPs) were identified; all of which are synonymous. Among them, c.456 C> and c.594 G> were further genotyped for association analysis based on case-control design (n =162 vs n =102). Meanwhile, growing rabbits were experimentally induced to digestive disorders by feeding a fiber-deficient diet, subsequently they were subjected to mRNA expression analysis. Association analysis revealed that haplotype H1 (the two cSNPs: GT) played a potential protective role against digestive disorders (p<0.001). The expression of NLRP3 in the group $H1HX_1$ ($H1HX_1$ is composed of H1H1, H1H3 and H1H4) was the lowest among four groups which were classified by different types of diplotypes. Those results suggested that the NLRP3 gene was significantly associated with susceptibility to digestive disorders in rabbit.

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Choline Essentiality and Its Requirement in Diets for Juvenile Parrot Fish (Oplegnathus fasciatus)

  • Khosravi, Sanaz;Jang, Ji-Woong;Rahimnejad, Samad;Song, Jin-Woo;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.647-653
    • /
    • 2015
  • A 12-wk feeding trial was conducted to evaluate the essentiality of choline supplementation in diets for parrot fish. Five isonitrogenous and isocaloric diets were supplemented with 0 (as control), 500, 1,000, and 2,000 mg choline per kg diet, and a positive control diet without choline contained 0.3% of 2-amino-2-methyl-1-propanol as choline biosynthesis inhibitor (designated as Con, C500, C1000, C2000 and $Con^+$, respectively). Triplicate groups of fish (body weight, $8.8{\pm}0.01g$) were fed one of the experimental diets at a rate of 4% body weight twice daily. The fish fed $Con^+$ diet revealed significantly lower growth performance and feed utilization efficiency than other fish groups. Supplementation of choline to the basal diet did not significantly influence fish growth. The highest liver lipid content was observed in fish fed the $Con^+$ diet and inversely correlated with liver choline concentration although the differences were not significant. Also, significantly higher liver linoleic, eicosapentaenoic and docosahexaenoic acid contents were found in fish fed the $Con^+$ diet. Innate immune parameters including respiratory burst and myeloperoxidase activities were not significantly affected by dietary choline levels. The findings in this study conclude that choline concentration of approximately $230mgkg^{-1}$ diet meets the requirement of parrot fish.

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells

  • Dong, Guanjun;You, Ming;Ding, Liang;Fan, Hongye;Liu, Fei;Ren, Deshan;Hou, Yayi
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.441-451
    • /
    • 2015
  • Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.