• Title/Summary/Keyword: inlet conditions

Search Result 985, Processing Time 0.033 seconds

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

A SENSITIVITY STUDY OF THE DISTORTED INLET FLOW IN AXIAL TURBOMACHINERY WITH NOVEL INTEGRAL SCHEME

  • Ng Eddie Yin-Kwee;Liu Ningyu;Lim Hong Ngiap;Tan Daniel
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • For proper installation, operation and performance of axial flow jet engines in aircrafts, the impacts and effects of inlet flow distortion in axial compressors have to be understood. Inlet distortion conditions may cause component-mismatch and instability problems known as rotating stall, and severe oscillations of mass flow rate called surge or a combination of both. Typical effects of this phenomenon include stresses and wear on the compressor blading, destruction of entire jet engines due to the failure of airfoil and mechanical failure or interruption of the combustion process. Therefore, it is important to study inlet flow distortion and its propagation effects to minimize and hence to prevent the occurrence of such calamity. The current novel integral method with parametric analysis signifies its validity to this field of research and offers much potential for further improvements. The present effort further indicates that this simple method may be flourishing in the problems of strongly distorted flow and propagating stall in axial compressor. It is therefore believe that using a more realistic and flexible velocity and pressure profiles could develop this approach further.

Experimental Investigation of Flow Oscillations in a Semi-closed Two-phase Natural Circulation Loop (준밀폐형 2상자연순환 회로 내에서의 유동 진동에 관한 실험적 연구)

  • Kim, Jong Moon;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1763-1773
    • /
    • 1998
  • In the present experimental study, the flow behavior in a semi-closed two-phase natural circulation loop was examined. Water was used as the working fluid. Heat flux, heater-inlet subcooling, and flow restrictions at the heater-inlet and at the expansion-tank-line were taken as the controlling parameters Six circulation modes were identified by changing heat flux and inlet subcooling conditions ; single-phase continuous circulation, periodic circulation (A), two-phase continuous circulation, and periodic circulations (B), (C), and (D). Among these, the single-phase and two-phase continuous-circulation modes exhibit no significant oscillations and are considered to be stable. Periodic circulation (A) is characterized by the large amplitude two-phase f10w oscillations with the temporal single-phase circulation between them, while periodic circulation (B) featured by the flow oscillations with continuous boiling inside the heater section. Periodic circulation (C) appears to be the manometric oscillation with continuous boiling. Periodic circulation (D) has the longer period than periodic circulation (B) and a substantial amount of liquid flow back and forth through the expansion-tank-line periodically ; this mode is considered the pressure drop oscillation. Parametric study shows that the increases of the inlet- and expansion-tank-line- restrictions and the decrease of inlet subcooling broaden the range of the stable two-phase(continuous circulation) mode.

Parametric Study on the Design of Turbocharger Journal Bearing - Aeration Effects

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2006
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure, then the friction and load of journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.

Flow Characteristic with Distance of Inlet Port and Rotating Length of Fluid in the Double Heat Exchanger (이중관 열교환기의 유체 유입위치와 회전길이에 따른 유동특성)

  • Lee, Seung-Ha;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • The length and position of the inlet port on the double tube heat exchanger is analyzed by CFX ver.11 for studying the characteristic of its flow distribution. When the boundary conditions of the inlet temperature and mass flow rate were each $20^{\circ}C$ and 10 ~ 50 kg/min, 3 models that are based on the distance between the inlet port and the center of the heat exchanger(0, 5.025, 10.05 mm) were analyzed to find the uniformity of the flow rate. Based on the flow rate, 4 lengths (23.723, 33.890, 44.057, 57.274 mm) were used to study the flow distribution according to Reynolds Number. The results show that, when the distance from the inlet to the position of the center of the heat exchanger is 10.05 mm and the length is 57.274 mm, the flow distribution is the most unified.

Aerodynamics Simulation of Three Hypersonic Forebody/Inlet Models

  • Xiao, Hong;Liu, Zhenxia;Lian, Xiaochun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.456-459
    • /
    • 2008
  • The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.

  • PDF

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.

Study on the Effect of Total Pressure Loss by Bell Mouth Inlet Screen (벨 마우스 흡입구 보호망에 의한 전압력 손실영향 연구)

  • Lee, Changwook;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • Bell mouth inlet is applied in various industries due to the advantage of little pressure loss and accurate flow measurement. In this study, the configuration of the bell mouth intake is designed in a long radius shape, and a suitable grid size was selected to minimize the pressure drop and to prevent the engine damage by foreign objects at outdoor operating conditions. It was able to present a modified pressure drop coefficient equation from two data obtained from the computational simulation and experimental results for the total pressure loss by inlet screen installation.

Investigation of the concentration characteristic of RCS during the boration process using a coupled model

  • Xiangyu Chi;Shengjie Li;Mingzhou Gu;Yaru Li;Xixi Zhu;Naihua Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2757-2772
    • /
    • 2023
  • The fluid retention effect of the Volume Control Tank (VCT) leads to a long time delay in Reactor Coolant System (RCS) concentration during the boration process. A coupled model combining a lumped-parameter sub-model and a computational fluid dynamics sub-model is currently used to investigate the concentration dynamic characteristic of RCS during the boration process. This model is validated by comparison with experimental data, and the predicted results show excellent agreement with experimental data. We provide detailed fields in VCT and concentration variations of RCS to study the interaction between mixing in VCT and the transient responses of RCS. Moreover, the impacts of the inlet flow rate, inlet nozzle diameter, original concentration, and replenishing temperature of VCT on the RCS concentration characteristic are studied. The inlet flow rate and nozzle diameter of VCT remarkably affect the RCS concentration characteristic. Too-large or too-small inlet flow rates and nozzle diameters will lead to unacceptable long delays. In this work, the optimal inlet flow rate and nozzle diameter of VCT are 5 m3/h and 58.8 mm, respectively. Besides, the impacts of the original concentration and replenishing temperature of VCT are negligible under normal operating conditions.

An Experimental Study on Low Nox Combustor Performance at High Pressure and Temperature for 20kW Class Microturbines (20kW급 마이크로터빈용 저공해 연소기의 고압고온 성능실험 연구)

  • Yoon, JeongJung;Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.183-190
    • /
    • 2002
  • In order to reduce NOx emissions in the 20kw class microturbines under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and pressure. Air from a compressor with the temperature of 500K to 650K and the pressure of 0.3bar gauge to 0.7bar gauge, was supplied to the combustor through an air preheat-treatment. Sampling exhaust gases were measured at the immediate exit of the combustor. for the effect of temperature on NO and CO emissions. though NOx was increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx and CO were increased also. NOx was decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratios of 0.10 to 0.25 in a lean region. NOx was increased with increasing equivalent ratios, but CO was decreased as an influence of flame temperature. In the very lean region of the equivalent ratio below 0.12, CO was increased suddenly, due to instability. As the results of this study, NOx and CO are found to be reduced to the similar level at the same time when operated at optimal conditions.

  • PDF