• Title/Summary/Keyword: inkjet printing

Search Result 277, Processing Time 0.03 seconds

Patterning of Single-wall Carbon Nanotube using Ink-jet Printing (잉크젯 프린팅에 의한 단일벽 탄소나노튜브의 패터닝)

  • Song, Jin-Won;Yoon, Yeo-Hwan;Han, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.236-237
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as 34${\mu}m$. In thisrepeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about $\pm$5% deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

Effect of Marangoni Flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent System.

  • Oh, Yeon-Jun;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.272-272
    • /
    • 2010
  • We have fabricated alumina thick films by inkjet printing technology. Two different types of ink system were formulated in order to understand their evaporation behaviors and their evaporation effects on the powder distribution on, the surface during inkjet-printed alumina thick films. Single solvent system was formulated with N,N-dimethylformamide(DMF), which led to coffee ring effects which non-uniformly distributed alumina particles on the substrate during the ink evaporation. However, Co-solvent system which consists of both Water and DMF produced relatively uniform distribution of the particles on the substrate. We believe that these two different distributions of alumina particles are attributed to the ink fluid flow directions in the ink droplets ejected from the different ceramic ink system. We have modulated inkjet parameters such as dot-to-dot distance, line-to-line distance, jetting velocity and jetting drop size in order to find out the optimum condition for the printing of alumina thick films from two different ink systems. The surface roughness, microstructures and dielectric properties of these inkjet-printed alumina thick films were investigated.

  • PDF

Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구)

  • Gun Woong Kim;Jaebum Jeong;Jin Ho Park;Woo Jin Jeong;Jun Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

Studies on Printing Inks Containing Poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene] as an Emissive Material for the Fabrication of Polymer Light-Emitting Diodes by Inkjet Printing

  • Kwon, Jae-Taek;Eom, Seung-Hun;Moon, Byung-Seuk;Shin, Jin-Koog;Kim, Kyu-Sik;Lee, Soo-Hyoung;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.464-468
    • /
    • 2012
  • Three solvent systems, chlorobenzene (ink 1), chlorobenzene/o-dichlorobenzene (ink 2) and chlorobenzene/tetrahydronaphthalene (ink 3), were compared as printable inks for the fabrication of polymer light-emitting diodes (PLEDs) using poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene (MEH-PPV) as an emissive material and an inkjet printer (Fujifilm Dimatix DMP-2831). Ink 1 clogged the printer's nozzle and gave non-uniform film. Inks 2 and 3 were used to fabricate PLEDs with ITO/PEDOT:PSS/MEH-PPV/LiF/Al configurations. The best performance (turn-on voltage, 3.5 V; luminance efficiency, 0.17 cd/A; luminance, 1,800 cd/m) was obtained when ink 3 was used to form the emissive layer (thickness, 49 nm), attributable to the better morphology and suitable thickness of the MEH-PPV layer.

Downscaling of self-aligned inkjet printed polymer thin film transistors

  • Noh, Yong-Young;Sirringhaus, Henning
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1564-1567
    • /
    • 2008
  • We demonstrate here a self-aligned printing approach that allows downscaling of printed organic thin-film transistors to channel lengths of 100 - 400 nm. A perfected down-scaled polymer transistors (L= 200 nm) showing high transition frequency over 1.5 Mhz were realized with thin polymer dielectrics, controlling contact resistance, and minimizing overlap capacitance via self-aligned gate configuration.

  • PDF

Using plasma etching to roughen a polyimide surface for inkjet printing (잉크젯 프린팅 적용을 위한 플라즈마 식각에 의한 폴리이미드 기판 조도생성)

  • Kim, Du-San;Mun, Mu-Gyeom;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.81-81
    • /
    • 2015
  • inkjet printing system으로 flexible 기판위에 metal interconnection 혹은 metal mesh를 제작 할 때 metal과 flexible substrate 의 접착력을 향상 시키고 선폭을 조절하기 위하여 surface roughness를 생성 시키고 표면을 hydrophobic 하게 개질 하였다. 그 결과 metal line의 선폭과 접착력이 향상됨을 알 수 있었다.

  • PDF

Development of Methods for Detecting Inkjet Malfunction (잉크젯 헤드의 오작동 검출 방법 개발)

  • Kwon, Kye-Si;Go, Jung-Kook;Kim, Jin-Won;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1529-1535
    • /
    • 2010
  • For the reliable use of inkjet technology as patterning tools, the jetting of the inkjet dispenser needs to be monitored for real-time detection of any malfunction. We present a self-sensing circuit that can be used to detect jetting failure by measuring electrical signals only. In addition, practical problems involved in the monitoring of inkjets in multinozzle printheads are discussed. In the study, software was developed and presented to demonstrate the feasibility of the proposed method for detecting inkjet jetting failure in a printing system.