• Title/Summary/Keyword: injury-induced

Search Result 2,030, Processing Time 0.039 seconds

Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats

  • Byun, Jae-Hyuk;Kim, Jun;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.218-223
    • /
    • 2018
  • The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride ($CCl_4$)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of $CCl_4$ (1.5 ml/kg, twice a week for 14 days). The administration of $CCl_4$ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to $CCl_4$ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in $CCl_4$ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by $CCl_4$ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

Protective Effect of Taurine on Indomethacin-induced Gastric Mucosal Injury

  • Son, Miwon;Kim, Hee-Kee;Kim, Won-Bae;Yang, Junnick;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.85-90
    • /
    • 1996
  • It has been suggested that oxygen-derived free radicals play an important role in the pathophysiology of acute gastric ulceration induced by NSAIDs and ischemia-reperfusion. Taurine is hypothetized to exert its protective effect on NSAIDs-induced gastric injury by its antioxidant properties. Protective effect of taurine on indomethacin-induced gastric mucosal lesion and its protection mechanism were investigated. Intragastric administration of 25 mg/kg of indomethacin induced hemorrhagic lesions on the glandular stomach in rats. Pretreatment with 0.25 or 0.5 g/kg of taurine one day before or for 3 days significantly reduced the gastric lesion formation and inhibited the elevation of lipid peroxide level in gastric mucosa. The luminol-dependent chemiluminescence of rat peritoneal neutrophils increased immediately after treatment of FMLP or indomethacin. Taurine (5-20 mM) inhibited chemiluminescence of neutrophils activated by FMLP. Human neutrophils (polymorphonuclear leukocytes) significantly adhered to the confluent monolayer of human umbilical vein endothelial cells (HUVEC) after coincubation with indomethacin. This neutrophil adhesion induced by indomethacin to HUVEC was prevented by taurine in a dose-dependent manner. These results indicate that the protective effect of taurine against NSAIDs-induced gastric mucosal injury is due to its antioxidant effect, which inhibits lipid peroxidation and neutrophil activation.

  • PDF

Anti-oxidative Effects of Dendrobii Herba on Toxic Agent Induced Kidney Cell Injury (석곡(石斛)의 항산화 효과)

  • Kim, Young-Gyun;Yang, Gi-Ho;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • Objectives : This study was carried out to determine if Dendrobii Herba have protective effect against cell injury induced by various toxic agents in rat kidney slices. Water(DWe) and methanol(DMe) extracts were prepared for this experiment. Methods : Cell injury was estimated by measuring lactate dehydrogenase(LDH). Lipid peroxidation was examined by measuring malondialdehyde, a product of lipid peroxidation. Results : DMe prevented the LDH release by $CCl_4$, menadione, tert-butyl hydroperoxide and mercury treatment in vitro in kidney slices, but DWe prevented the LDH release by $CCl_4$ and mercury. DMe also prevented reduction in GSH and lipid peroxidation induced by $CCl_4$ and mercury. Conclusion : Thus, DMe may have more powerful efficacy on anti-oxidative effects when compared with DWe. And further studies have to be followed concerned with extraction of Dendrobii Herba and its change of effects.

  • PDF

Morphological Study of Acute Lung Injury Induced by Interleukin-1$\alpha$ Intratracheally in Young and Old Rats (젊은 흰쥐와 늙은 흰쥐에서 인터루킨-1$\alpha$로 유도된 급성폐손상에 관한 형태학적 연구)

  • 조현국;이영만;박원학
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.139-150
    • /
    • 1997
  • In order to investigate the effect of aging and the $H_2O$$_2$ localization in association with histological, ultrastructural, and cytochemical studies in lung tissue after interleukin-1$\alpha$(IL-1) induced lung injury, an acute lung injury was induced by instillation of IL-1 into the trachea. Both of 4- and 20-months-old male rats, protein contents in IL-1 treated branchoalveolar lavage increased significantly compared to each control rats. Acute lung injury occured by oxidative stress because neutrophils accumulated in vascular lumen and formed the adhesion with endothelial cells. As these cause, tissue proteins were exuded and leukocytes migrated into the alveolar lumen. Neverthless in these lung injury $H_2O$$_2$ localization of IL-1 treated 20 months rats was not different compared to IL-1 treated 4 months rats. After all aging was not a factor to accelate IL-1 induced lung injury. Based on these results, it is suggested that neutrophil infilteration might be an important cause in acute lung injury, and aging is not a factor to change the acute lung injury by oxidative stress.

  • PDF

Effects of lipopolysaccharide and CpG-DNA on burn-induced skin injury

  • Park, Byoung-Kwon;Kim, Dong-Bum;Cho, Sun-Hee;Seo, Jae-Nam;Park, Jae-Bong;Kim, Yong-Sun;Choi, Ihn-Geun;Kwon, Hyeok-Yil;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • Destruction of the skin barrier by thermal injury induces microbial invasion, which can lead to the development of systemic infection and septic shock. Microbial pathogens possess pathogen-associated molecular patterns (PAMPs), which are recognized by conserved receptors. To understand the role of PAMPs in thermal injury-induced mice, LPS or CpG-DNA were topically applied to dorsal skin after thermal injury. We observed an increase in the number of inflammatory cell infiltrates as well as thickening in the dermis upon treatment with LPS or CpG-DNA. We also found that expression of IL-$1{\beta}$, MIP-2, and RANTES induced by thermal injury was enhanced by LPS or CpG-DNA. In addition, the proportions of $CD4^+$ and $CD^8+$ T cells in the spleen and lymph nodes were altered by LPS or CpG-DNA. These results provide important information concerning PAMPs-induced inflammation upon thermal injury and provide a basis for studying the role of PAMPs in thermal injury-induced complications.

Heat shock protein 90β inhibits apoptosis of intestinal epithelial cells induced by hypoxia through stabilizing phosphorylated Akt

  • Zhang, Shuai;Sun, Yong;Yuan, Zhiqiang;Li, Ying;Li, Xiaolu;Gong, Zhenyu;Peng, Yizhi
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and $Hsp90{\beta}$ in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by $Hsp90{\beta}$ overexpression but enhanced by decreasing $Hsp90{\beta}$ expression. $Hsp90{\beta}$ overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing $Hsp90{\beta}$ expression had opposite effects. The protective effect of $Hsp90{\beta}$ against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by $Hsp90{\beta}$, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between $Hsp90{\beta}$ and pAkt. These results demonstrate that $Hsp90{\beta}$ may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release.

Effects of Copper / Zinc-Containing Superoxide Dismutase (Cu, Zn-SOD) and Catalase on Paraquat-Induced Injury in Primary Cultured Rat Skin Fibroblast (일차 배양한 백서 피부섬유아세포에서 Paraquat 독성에 미치는 SOD 와 Catalase 의 영향)

  • Cha, Jong Hui;Yu, Ui Gyeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 1994
  • The participation of superoxide in initiating tissue damage derived from xenobiotics is best illustrated by paraquat intoxication. In the present study, the roles of superoxide dismutase and catalase on paraquat-induced cell injury were investigated using primary cultured rat skin fibroblast. The degree of cell injury was assassed by the conversion of reduced MTT to a blue formazan. Paraquat produced concentration-and time-related cell injury in cultured rat skin fibroblast. Paraquat induced-cell injury was aggravated by pretreatment of aminotriazol (AT: 10 mM), an catalase inhibitor, and attenuated by addition of catalase (100∼500 unit/ml). However, the effects of diethyldithiocarbamate (DDC : 10 mM), copper- and zinc-containing superoxide dismutase (Cu, Zn-SOD) inhibitor, and Cu, Zn-SOD on paraquat-induced injury were not significant. These results suggest that hydrogen peroxide might be more responsible factor than superoxide in the pathogenesis of paraquat-induced cell injury.

  • PDF

Protective Effects of Samgiinjin-tang on Liver Injury of Rats (흰쥐의 간손상(肝損傷)에 대한 삼(蔘)기인진탕(茵蔯湯)의 간(肝) 보호효과(保護效果))

  • Kang, Jae-Chun;Lee, You-Kyung
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.309-320
    • /
    • 2001
  • Objectives : This study was done to investigate the protective effects of Samgiinjin-tang on liver injury of rats induced by CCI4 and d-galactosamine. Methods: All animals were divided into .5 groups, those were normal group(untreated), control group(treated with 0.9% Saline solution), sample I group(2,250mg/kg administrated), sample II group(4,500mg/kg administrated), Silymarin 200mg/kg administrated group. Liver injury of rats were induced by CCI4 and d-galactosamine, and then the serum transaminases(ALT&AST) alkaline phosphatase(ALP), lactic dehydrogenase(LDH) for enzyme activities, liver weight, lipid peroxidation and catalase, glutathione S-transferase(GST) for enzyme activities were measured. Results : The inhibitory effects on the serum ALT, AST activities in liver injury of rats induced by CCI4 were noted in both sample I and sample II group. The inhibitory effects on the serum ALP, LDH activities and the Lipid peroxidation of Mitochondria & Cytosol were noted in only sample II group. The decreased effects on the GST activities of Homogenate & Cytosol were inhibited in both sample I and sample II groups. The decreased effects on the GST activities of Mitochondria & Microsome were inhibited in sample II group. The inhibitory effects of the serum ALT, AST, LDH activities in liver injury of rats induced by d-galactosamine were noted in both sample I and sample II groups. In serum AST activities, sample II group. Conclusions : Samgiinjin-tang has protective effects against liver injury of rats induced by CCI4 and d-galactosamine. So it is required to study about the actions of mutual relation of medicines and patho-mechanism by experiment.

  • PDF

The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions

  • Lee, Ho;Jeong, Yeon-Uk;Chan, Kin F.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2009
  • Following their applications in cardiology, ophthalmology and dentistry among others, the advent of lasers in dermatology and urology had become the success story of the past decade. Laser-assisted treatments in dermatology and urology are mainly based on the laser-induced tissue injury/coagulation and/or ablation, depending upon the desirable clinical endpoint. In this review, we discussed the underlying mechanisms of the laser induced tissue ablation. In any medical laser application, the controlled thermal injury and coagulation, and the extent of ablation, if required, are critical. The laser thermal mechanism of injury is intricately related to the selective absorption of light and its exposure duration, similarly to the laser induced ablation. The laser ablation mechanisms were categorized into four different categories (the photo-thermally induced ablation, the photo-mechanically induced ablation, the plasma induced ablation and the photoablation) and their fundamentals are herein described. The brief history of laser treatment modality in dermatology and urology are summarized.

Hepatoprotecive Effects of Alnus japonica Extract on Experimental Liver Injury Models (오리나무 추출물(AI-1367)의 간질환 동물모델에서의 간 보호효과)

  • Zhao, Yu-Zhe;Lee, Sung-Hee;Huh, Jae-Wook;Ra, Jeong-Chan;Sohn, Dong-Hwan
    • YAKHAK HOEJI
    • /
    • v.56 no.2
    • /
    • pp.99-107
    • /
    • 2012
  • The protective effect of AI-1367 (Alnus japonica extract) on liver injury was investigated. Primary rat hepatocyte intoxication was induced by tert-butyl hydroperoxide (tBH), carbon tetrachloride ($CCl_4$), or D-glactosamine (D-GalN). Liver injury was induced by $CCl_4$, D-GalN or MCD (methionine choline deficient)-diet in mouse. The cellular leakage of lactate dehyrogenase and cell viability followed by the treatment of hepatotoxicants were significantly improved by AI-1367 treatment at a concentration range of 5~50 ${\mu}g/ml$ for tBH, 5~50 ${\mu}g/ml$ for D-GalN, and 5~100 ${\mu}g/ml$ for $CCl_4$, respectively. Treatment with AI-1367 (20, 10, 5 mg/kg, p.o.) on liver injury induced by subcutaneous injection of $CCl_4$ or D-GalN reduced significantly the levels of aspartate transaminase and alanine transaminase in serum. Histological observations revealed that fatty acid changes, hepatocyte necrosis and inflammatory cell infiltration in $CCl_4$ (D-GalN)-induced liver injury was improved by administration of AI-1367. AI-1367 treatment (10, 5, 2.5 mg/kg, p.o.) also significantly recovered the body weight change and serum levels of aspartate transaminase, alanine transaminase and triglyceride in liver injury induced by MCD diet. From these results, AI-1367 shows protective effects against tBH, $CCl_4$, D-GalN, or MCD diet-induced hepatotoxicity in vitro or in vivo.