Browse > Article
http://dx.doi.org/10.3807/JOSK.2009.13.3.321

The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions  

Lee, Ho (School of Mechanical Engineering, Kyungpook National University)
Jeong, Yeon-Uk (School of Materials Science & Engineering, Kyungpook National University)
Chan, Kin F. (Fourier Biotechnologies)
Publication Information
Journal of the Optical Society of Korea / v.13, no.3, 2009 , pp. 321-329 More about this Journal
Abstract
Following their applications in cardiology, ophthalmology and dentistry among others, the advent of lasers in dermatology and urology had become the success story of the past decade. Laser-assisted treatments in dermatology and urology are mainly based on the laser-induced tissue injury/coagulation and/or ablation, depending upon the desirable clinical endpoint. In this review, we discussed the underlying mechanisms of the laser induced tissue ablation. In any medical laser application, the controlled thermal injury and coagulation, and the extent of ablation, if required, are critical. The laser thermal mechanism of injury is intricately related to the selective absorption of light and its exposure duration, similarly to the laser induced ablation. The laser ablation mechanisms were categorized into four different categories (the photo-thermally induced ablation, the photo-mechanically induced ablation, the plasma induced ablation and the photoablation) and their fundamentals are herein described. The brief history of laser treatment modality in dermatology and urology are summarized.
Keywords
Laser surgery; Laser tissue interaction; Laser ablation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 H. Lee, 'Pulsed laser-induced material ablation and its clinical applications,' Ph.D. Dissertation, Univ. Texas Austin (2000)
2 J. S. Nelson,'In this issue. Dermatologic laser surgery,' Lasers Surg. Med. 26, 105-107 (2000)   DOI
3 M. B. T. Alora and R. R. Anderson, 'Recent developments in cutaneous lasers,' Lasers Surg. Med. 26, 108-118 (2000)   DOI   ScienceOn
4 J. G. Sulewski, 'Historical survey of laser dentistry,' Dent. Clin. North Am. 44, 717-752 (2000)
5 A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, 'Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,' Appl. Opt. 36, 402-415 (1997)   DOI
6 S. L. Jacques, 'Laser-tissue interactions: photochemical, photothermal, and photo mechanical,' Surg. Clin. North Am. 72, 531-558 (1992)   DOI
7 A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser-irradiated Tissue (Plenum Press, New York, USA, 1995), Chapter 21-25
8 M. H. Niemz, Laser-tissue Interactions: Fundamental and Applications (Springer, Berlin, Germany, 1996)
9 K. F. Chan, T. J. Pfefer, J. M. H. Teichman, and A. J. Welch, 'A perspective on laser lithotripsy: the fragmentation processes,' J. Endourol. 15, 257-273 (2001)   DOI   ScienceOn
10 M. Sato, M. Ishihara, T. Arai, T. Asazuma, T. Kikuchi, T. Hayashi, T. Yamada, M. Kikuchi, and K. Fujikawa, 'Use of a new ICG-dye-enhanced diode laser for percutaneous laser disc decompression,' Lasers Surg. Med. 29, 282-287 (2001)   DOI   ScienceOn
11 P. Janda, R. Sroka, R. Baumgartner, G. Grevers, and A. Leunig, 'Laser treatment of hyperplastic inferior nasal turbinates: a review,' Lasers Surg. Med. 28, 404-413 (2001)   DOI   ScienceOn
12 K. F. Chan, 'Pulsed infrared laser ablation and clinical applications,' Ph.D. Dissertation, Univ. Texas Austin (2000)
13 J. P. Cummings and J. T. Walsh, 'Tissue tearing caused by pulsed laser-induced ablation pressure,' Appl. Opt. 32, 494-503 (1993)   DOI
14 B. M. Lippert, S. Gottschlich, C. Kulkens, B. J. Fol, H. Rudert, and J. A. Werner, 'Experimental and clinical results of Er:YAG laser stapedotomy,' Lasers Surg. Med. 28, 11-17 (2001)   DOI   ScienceOn
15 E. V. Ross, Y. Domankevitz, M. Skrobal, and R. R. Anderson, 'Effects of $CO_2$ laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing,' Lasers Surg. Med. 19, 123-129 (1996)   DOI   ScienceOn
16 D. W. Fradin, N. Bloembergen, and J. P. Letellier, 'Dependence of laser-induced breakdown field strengthon pulse duration,' Appl. Phys. Lett. 22, 635-637 (1973)   DOI
17 I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, 'The thermoelastic basis of short pulsed laser ablation of biological tissue,' Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995)   DOI
18 R. Kelly and A. Miotello, 'Comments on explosive mechanisms of laser sputtering,' Appl. Surf. Sci. 96-98, 205-215 (1996)   DOI   ScienceOn
19 A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, 'Intraocular Nd:YAG laser surgery: lighttissue interaction, damage range, and reduction of collateral effects,' IEEE J. Quantum Electron. 26, 2240-2260 (1990)   DOI   ScienceOn
20 T. J. Pfefer, B. Choi, G. Vargas, K. M. McNally, and A. J. Welch, 'Pulsed laser-induced thermal damage in whole blood,' T. ASME. J. Biomech. Eng. 122, 196-202 (2000)   DOI   ScienceOn
21 J. T. Walsh and T. F. Deutsch, 'Pulsed $CO_2$ laser ablation of tissue: effect of mechanical properties,' IEEE Trans. Biomed. Eng. 36, 1195-1201 (1989)   DOI   ScienceOn
22 A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, 'Mechanism of laser ablation for aqueous media irritated under confined-stress conditions,' J. Appl. Phys. 78, 1281-1290 (1995)   DOI   ScienceOn
23 B. Majaron, P. Plestenjak, and M. Lukac, 'Thermomechanical laser ablation of soft biological tissue: modeling the micro-explosions,' Appl. Phys. B 69, 71-80 (1999)   DOI
24 S. P. Dretler, 'Laser lithotripsy: a review of 20 years of research and clinical applications,' Lasers Surg. Med. 8, 341-356 (1988)   DOI   ScienceOn
25 J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, 'Ultrashort pulse lasers for hard tissue ablation,' IEEE J. Quantum Electron. 2, 790-800 (1996)   DOI   ScienceOn
26 M. H. Niemz, 'Cavity preparation with the Nd:YLF picosecond laser,' J. Dent. Res. 74, 194-199 (1995)   DOI   ScienceOn
27 J. T. Walsh and T. F. Deutsch, 'Pulsed $CO_2$ laser tissue ablation: measurement of the ablation rate,' Lasers Surg. Med. 8, 264-275 (1988)   DOI   ScienceOn
28 E. E. B. Campbell, D. Ashkenasi, and A. Rosenfeld, 'Ultra-short-pulse laser irradiation and ablation of dielectrics,' Mater. Sci. Forum. 301, 123-144 (1999)   DOI
29 V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP Press, New York, USA, 1993)
30 K. Rink, G. Delacretaz, and R. P. Salathe, 'Fragmentation process of current laser lithotriptors,' Lasers Surg. Med. 16, 134-146 (1995)   DOI   ScienceOn
31 D. Baurele, Laser Processing and Chemistry (Springer, Berlin, Germany, 1996), Chapter 6
32 J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 215-217
33 A. Vogel, K. Nahen, and D. Theisen, 'Plasma formation in water by picosecond and nanosecond Nd:YAG laserpulses. I. Optical breakdown at threshold and superthreshold irradiance,' IEEE J. Quantum Electron. 2, 847-860 (1996)   DOI   ScienceOn
34 P. P. Pronko, P. A. VanRompay, C. Horvath, T. Juhasz, X. Liu, and G. Mourou, 'Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,' Phys. Rev. B 58, 2387-2390 (1998)   DOI
35 M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, 'Femtosecond optical breakdown in dielectrics,'Phys. Rev. Lett. 80, 4076-4079 (1998)   DOI   ScienceOn
36 D. W. Fradin, E. Yablonovitch, and M. Bass, 'Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 $\mu$m,' Appl. Opt. 12, 700-709 (1983)   DOI
37 S. Dahan, J. M. Lagarde, V. Turlier, L. Courrech, and S. Mordon, 'Treatment of neck lines and forehead rhytids clinical study combined with the measurement of the thickness and the mechanical properties of the skin,' Dermatol. Surg. 30, 872-879 (2004)   DOI   ScienceOn
38 A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, 'Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold,' Proc. Soc. Photo. Opt. Instrum. Eng. 4633A, 23-37 (2002)
39 A. C. Tien, S. Bakus, H. Kapteyn, M. Murnane, and G. Mourou, 'Short-pulse laser damage in transparent materials as a function of pulse duration,' Phys. Rev. Lett. 82, 3883-3886 (1999)   DOI   ScienceOn
40 M. Bass and H. H. Barrett, 'Avalanche breakdown and the probabilistic nature of laser-induced damage,' IEEE J. Quantum Electron. QE-18, 338-343 (1983)   DOI
41 G. J. R. Spooner, T. Juhasz, I. R. Traub, G. Djotyan, C. Horvath, Z. Sacks, G. Marre, D. Miller, A. R. Williams, and R. Kurtz, 'Commercial and biomedical applications of ultrafast lasers,' Proc. Soc. Photo. Opt. Instrum. Eng. 3934, 62-72 (2000)
42 T. Szorenyi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, 'Chemical analysis of $a-CN_x$ thin films synthesized by nanosecond and femtosecond pulsed laser deposition,' Appl. Phys. A 69, 941-944 (1999)   DOI
43 R. Srinivasan, P. E. Dyer, and B. Braren, 'Far-ultraviolet laser ablation of the cornea: photoacoustic studies,' Lasers Surg. Med. 6, 514-519 (1987)   DOI   ScienceOn
44 N. M. Fried, 'Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 microm,' Lasers Surg. Med. 37, 53-58 (2005)   DOI   ScienceOn
45 H. Lee, J.-W. Yoon, Y.-D. Jung, J.-H. Kim, T. R. Robert, M. H. J. Teichman, and A. J. Welch, 'Comparison of sapphire and germanium fibers for erbium: YAG lithotripsy,' J. Opt. Soc. Korea 12, 309-313 (2008)   과학기술학회마을   DOI   ScienceOn
46 T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, 'Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium:YAG laser radiation,' Lasers Surg. Med. 38, 787-791 (2006)   DOI   ScienceOn
47 P. Nelson, P. Veyrie, M. Berry, and Y. Durand, 'Experimental and theoretical studies of air breakdown by intense pulse of light,' Phys. Lett. 13, 226-228 (1964)   DOI   ScienceOn
48 A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, 'Subpicosecond laser ablation of dental enamel,' J. Appl. Phys. 92, 2153-2158 (2002)   DOI   ScienceOn
49 D. L. Matthews, L. Da Silva, B. M. Kim, and J. Marion, 'Surgical applications of ultrashort pulse laser technology,' in Proc. Advanced Solid State Laser Annual Meeting (Boston, MA, USA, 1999), TuA1
50 C. A. Pxuliato, D. Stern, R. R. Kreuger, and E. R. Mandel, 'High-speed photography of excimer laser ablation of the cornea,' Arch. Ophthal. 105, 1255-1259 (1987)   DOI   ScienceOn
51 J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 133-143
52 B. M. Hantash, V. P. Bedi, K. F. Chan, and C. B. Zachary, 'Ex vivo histological characterization of a novel ablative fractional resurfacing device,' Lasers Surg. Med. 39, 87-95 (2007)   DOI   ScienceOn
53 B. M. Hantash, V. P. Bedi, V. Sudireddy, S. K. Struck, G. S. Herron, and K. F. Chan, 'Laser-induced transepidermal elimination of dermal content by fractional photothermolysis,' J. Biomed. Opt. 11, 041115 (2006)   DOI   ScienceOn
54 J. N. Kabalin, 'Laser prostatectomy performed with a right angle firing neodymium:YAG laser fiber at 40 watts power setting,' J. Urol. 150, 95-99 (1993)   DOI
55 N. J. Barber and G. H. Muir, 'High-power KTP laser prostatectomy: the new challenge to transurethral resection of the prostate,' Curr. Opin. Urol. 14, 21-25 (2004)   DOI   ScienceOn
56 R. R. Anderson and J. A. Parrish, 'Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,' Science 220, 524-527 (1983)   DOI
57 B. M. Hantash, V. P. Bedi, B. Kapadia, Z. Rahman, K. Jiang, H. Tanner, K. F. Chan, and C. B. Zachary, In vivo histological evaluation of a novel ablative ' fractional resurfacing device,' Lasers Surg. Med. 39, 96-107 (2007)   DOI   ScienceOn
58 R. Tooher, P. Sutherland, A. Costello, P. Gilling, G. Rees, and G. Maddern, 'A systematic review of holmium laser prostatectomy for benign prostatic hyperplasia,' J. Urol. 171, 1773-1781 (2004)   DOI   ScienceOn
59 S. P. Dretler, 'Laser lithotripsy: a review of 20 years of research and clinical applications,' Lasers Surg. Med. 8, 341–356 (1988)   DOI   ScienceOn
60 K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, 'Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,' Appl. Opt. 42, 2431-2435 (2003)   DOI
61 Y. Yang, C. A. Chaney, and N. M. Fried, 'Erbium: YAG laser lithotripsy using hybrid germanium/silica optical fibers,' J. Endourol. 18, 830-835 (2004)   DOI   ScienceOn
62 D. Mains, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, 'Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,' Lasers Surg. Med. 34, 426-438 (2004)   DOI   ScienceOn
63 V. P. Bedi, K. F. Chan, R. K. Sink, B. M. Hantash, G. S. Herron, Z. Rahman, S. K. Struck, and C. B. Zachary, 'The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing,' Lasers Surg. Med. 39, 145-155 (2007)   DOI   ScienceOn
64 K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, 'Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,' Lasers Surg. Med. 25, 22-37 (1999)   DOI   ScienceOn
65 H. Lee, H. W. Kang, J. M. Teichman, J. Oh, and A. J. Welch, 'Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,' Lasers Surg. Med. 38, 39–51 (2006)   DOI   ScienceOn
66 C. A. Chaney, Y. Yang, and M. Fried, 'Hybrid germanium/ silica optical fibers for endoscopic delivery of erbium: YAG laser radiation,' Lasers Surg. Med. 34, 5-11 (2004)   DOI   ScienceOn