• Title/Summary/Keyword: injection test

Search Result 2,183, Processing Time 0.03 seconds

Rock Permeability Estimation from Hydraulic Injection Tests in a Sealed Borehole Interval

  • Quach, Nghiep Q.;Jo, Yeonguk;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • We propose a borehole test technique to estimate permeability of rocks in borehole. The borehole tests are hydraulic injection tests such as leak-off test and hydraulic fracturing tests, which are originally conducted for stress or casing integrity assessment and not for permeability measurement. We use one-dimensional radial diffusion equation to interpret fluid injection test results in terms of permeability. We apply this technique to a leak-off test conducted at a depth of 700 m in a wellbore, where rock formation is mudstone. The estimated permeability is at an order of $10^{-16}m^2$, which is somewhat high but within the range reported for mudstones previously. Quantitative rick assessment suggests that an accurate measurement of open hole section length is important to improve reliability of results. More data may be needed to ensure the reliability of this technique. If validated, however, this technique can provide cost-effective estimation of in situ permeability without conducting independent permeability tests in borehole.

Development of Underwater ROV for Crack Inspection of River Facilities (하천 시설물 균열 검사를 위한 수중 ROV 개발)

  • Seong, Ho-Hwan;Lee, Jang-Myung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • River facilities and port structures require a regular inspection and diagnosis due to obsolescence. Currently, most river facilities are undergoing indirect inspection and diagnosis by divers. The underwater inspections are not feasible due to safety issues of divers and restrictions on working hours and environment. To overcome these issues, it is intended to conduct inspections of river facilities using underwater drones. In this research, an underwater ROV (Remote Operated Vehicle) has been developed, which is a kind of drone with propellers. As a key device of this research, an injection device has been attached to the underwater drone to conduct an operation test, a stable operation test of an underwater drone, and a test of attached sensors. The river facility inspection can be carried out optimally using the hovering control of the drone and injection systems. With the developed ROV system, hovering test and injection test have been performed to verify the feasibility of this development.

A Study on the Ground Reinforcement of Jeju Scoria Layer by Chemical Grouting (약액주입에 의한 제주도 송이지층의 지반보강에 관한 연구)

  • Yang, Kiho;Park, Jeongjun;Kim, Younghun;Byun, Yoseph;Lee, Eunjong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Recently, public works becoming bigger in Jeju are implemented various kinds of ground reinforcement method including the chemical grouting method. In this study, we have been investigated on the proper material and the injection condition for the excellent injection effect and the excellent strength of injection material and the permanent waterproof and reinforcement through the experiment. The kind of injection material has been selected through the uniaxial compression test and the endurance test of injection material as the chamber test. An experiment was performed with model ground made of scoria, the injection performance of selected material has been identified through the evaluation test of injection range using the decision test of injection amount and the calibration chamber test. As a result of test, it has been analyzed that MSG appeared to have the excellent strength, durability and injection performance all compared with the ordinary cement, this result is judged to be possible as the ancillary data of design at time of design and construction with the chemical grouting method in the future.

A Study on the Application Method of Artificial Injection Test according to the Hydraulic Conductivity of Aquifer (대수층 수리지질특성에 따른 인공함양시험 적용 방법에 관한 연구)

  • Chae, Dong-Seok;Choi, Jin-O;Jeong, Hyeon-Cheol;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.589-601
    • /
    • 2021
  • Artificial recharge technology is a method for solving problems such as groundwater level drop and ground subsidence caused by groundwater withdrawal. This study investigated the applicability of using the hydraulic conductivity of an aquifer to predict injection test results for aquifer restoration. Pumping and injection tests were performed under the same conditions as those for the artificial injection facility located in Icheon, Gyeonggi-do. The hydraulic conductivity of the aquifer, which plays a decisive role in restoring the groundwater level, was derived from the pumping test. A numerical model of a simplified on-site aquifer was constructed, and a transient analysis was applied with the same conditions as the pumping test. The correlation between the measured and the resulting model values is strong (R2 = 0.78). The injection test was performed in a sedimentary layer composed of silt sand and clay sand. From the results of the injection test, an empirical formula was derived using Theim's formula, which is a common well analysis solution to determine the parameters of the aquifer from time-level data. The model values from the empirical formula have a high degree of correlation (R2 = 0.99) with measured values. Under specific conditions, for areas where it is difficult to conduct an injection test, the formula from this study, which relies on the hydraulic conductivity of the aquifer determined through the pumping test, may be used to predict reliable injection rates for groundwater restoration.

A Study of the Compaction Effect of Expansive Admixture for the Development of an Expansive Compaction Packer

  • Kim, Jin-Chun;Park, Ki-Yeon;Lee, Dong-Ik;Lee, Gyu-Sang;Kim, Sang-Gyun;Yoo, Byung-Sun;Choi, Gi-Sung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2015
  • Although permeating injection is ideal for grouting reservoir embankments, it is usually combined with fracturing injection for grouting, which can disturb the original soil. Compaction with low expansive pressure followed by grout injection can overcome this problem. An expansive compaction (EC) packer was developed in this work to easily apply sequential injection and compaction at a work site. Furthermore, to achieve compaction around the grouting hole, a mixture of expansive admixtures and grout was injected with the EC packer to trigger an increase in volume of the grout material. This work verifies the compaction effect of the EC packer and the expansive admixture. It reports the concepts of the EC packer, the range of expansive compaction, the effectiveness of injection, and the results of indoor tests performed to verify the effectiveness of the expansive admixtures. The indoor testing comprised a preparatory test and the main test. The preparatory test assessed the admixtures for their compaction effects, while the main test measured and analyzed the admixtures' expansive force, pressure, and compaction effect with a mold to verify the effectiveness of the compaction effect.

Case Study of Flexural Strength Evaluation of Epoxy Injected Concrete Using Low Pressure Mixed with Mechanical High Pressure (기계식 고압과 저압을 혼용한 에폭시 주입 콘크리트의 휨강도 검토 사례 연구)

  • Hong, Ki-Nam;Yu, Yeon-Jong;Lee, Kang-Moon;Ryu, Chang-Yeol;Yoon, Hong-Su
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • The objective of this study is to investigate the capacity of epoxy injection method using low pressure mixed with high pressure. Injection depth test and flexural strength test were respectively performed on $40{\times}45{\times}35$ cm and $100{\times}10{\times}40$ cm specimens. Considered as the test variables were injection type(low pressure, low and high pressure), crack width(0.25 mm, 0.50 mm), injection direction(upper, lower, side), and epoxy viscosity(low, medium, high). Test results showed that low viscosity epoxy injection depth of injector using low pressure mixed with high pressure for upper direction were 23 cm and tension strength of crack face repaired by injector using low pressure mixed with high pressure was larger than that of concrete.

Seismic rehabilitation of RC frame using epoxy injection technique tested on shaking table

  • Yu, Jiangtao;Zhang, Yuanmiao;Lu, Zhoudao
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.541-558
    • /
    • 2014
  • A 1/4-scale two-bay eight-storey reinforced concrete frame was tested on shaking table. Initial shaking table tests were carried out through a set of real seismic excitations to investigate the seismic behavior of the RC frame. Subsequently, the damaged frame was repaired using epoxy injection technique, and then subjected to the tests with the same records. The purpose of this study was to investigate experimentally the dynamic characteristics, cracking pattern and lateral inter-story stiffness of RC frames using epoxy injection technique. The test results indicate that epoxy-injection technique appears to be a satisfactory method for repairing earthquake-damaged structure.

Injection Moulding of Polyetherimide Axi-Symmetric Elements (PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구)

  • 하영욱;정태형;이범재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

Simulation and Experiment of Injection Molding Process for Superalloy Feedstock

  • Jung, Im Doo;Kim, Youngmoo;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Powder injection molding is an important manufacturing technology to mass produce superalloy components with complex shape. Injection molding step is particularly important for realizing a desired shape, which requires much time and efforts finding the optimum process condition. Therefore computer aided engineering can be very useful to find proper injection molding conditions. In this study, we have conducted a finite element method based simulation for the spiral mold test of superalloy feedstock and compared the results with experimental ones. Sensitivity analysis with both of simulation and experiment reveals that the melt temperature of superalloy feedstock is the most important factor for the full filling of mold cavity. The FEM based simulation matches well the experimental results. This study contributes to the optimization of superalloy powder injection molding process.

A Study of Performance Test of High Speed Solenoid for Fuel Injector in Diesel Engine (디젤기관의 분사밸브를 위한 고속 솔레노이드의 성능에 관한 연구)

  • Cho, K.H.;Rha, J.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2001
  • In the DI diesel engine of passenger cars, common rail injection system have been used to improve the engine performance and reduce the exhaust emission by controlling injection timing, injection pattern, and injection duration. In case that common rail injection system is applied to high speed DI diesel engine, it is necessary to have high response and good repetition characteristics. These characteristics of injector depend on the characteristics of solenoid. Thus, to apply the common rail injection system in the high speed diesel engine, we had designed and made a multi-pole solenoid, and carried out repetition, response test to compare the multi-pole solenoid with the gasoline Injector solenoid. The result shows that repetition and response characteristics of multi-pole solenoid have better characteristics than the gasoline injector solenoid.

  • PDF