• Title/Summary/Keyword: initiation pressure

Search Result 222, Processing Time 0.034 seconds

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Effect of Blood Pressure on the Endothelium-Dependent Contraction in Rat Aorta

  • Jeon, Byeong-Hwa;Kim, Hoe-Suk;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.21-31
    • /
    • 1996
  • To investigate the mechanisms of increased endothelium-dependent contraction by acetylcholine in hypertensive rats, the relationship between endothelium-dependent contraction by acetylcholine and blood pressure was studied in spontaneously hypertensive rats (SHR), one-kidney, one clip Goldblatt hypertension (1K,1C-GBH) rats, and Wistar-Kyoto rats (WKY). SHR were treated orally with enalapril or nicardipine in order to prevent development of hypertension or suppress the developed hypertension. 1K,1C-GBH rats were made by renal artery stenosis with contralateral nephrectomy in 8 week-WKY. 1. Endothelium-dependent contractions by acetylcholine $(10^{-6}{\sim}10^{-5}\;M)$ in SHR were significantly greater than those in WKY. 2. Chronic treatment with enalapril or nicardipine reduced the endothelium-dependent contraction in SHR 3. The degree of reduction of endothelium-dependent contraction was greater in SHR which was prevented from developing hypertension than in SHR of which high blood pressure was suppressed. 4. In aortic rings from 1K,1C-GBH rats, endothelium-dependent contractions by acetylcholine were augmented as compared with WKY. 5. There is good relationship between the value of blood pressure and magnitude of endothelium-dependent contraction. Thus, it is suggested that increased endothelium-dependent contraction in hypertensive rats may he due to the high blood pressure and endothelium-dependent contraction may not be a cause of the initiation of hypertension in SHR.

  • PDF

An experimental study on the hydraulic fracturing of radial horizontal wells

  • Yan, Chuanliang;Ren, Xu;Cheng, Yuanfang;Zhao, Kai;Deng, Fucheng;Liang, Qimin;Zhang, Jincheng;Li, Yang;Li, Qingchao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • Combining the radial well drilling and hydraulic fracturing technique, the production capacity of the reservoirs with low-permeability can be improved effectively. Due to the existence of radial holes, the stress around the well is redistributed, and the initiation and propagation of hydraulic fractures are different with those in traditional hydraulic fracturing. Therefore, it is necessary to study the influences of radial horizontal wells on hydraulic fracturing. The laboratory experiment was conducted to simulate the hydraulic fracturing on the physical model with radial holes. The experimental results showed that, compared with the borehole without radial holes, the sample with radial hole in the direction of maximum horizontal stress was fractured with significantly lower pressure. As the angle between direction of the horizontal hole and the maximum horizontal stress increased, the breakdown pressure grew. While when the radial hole was drilled towards the direction of the minimum horizontal stress, the breakdown pressure increased to that needed in the borehole without radial holes. When the angle between the radial hole and the maximum horizontal stress increase, the pressure required to propagate the fractures grew apparently, and the fracture become complex. Meanwhile, the deeper the radial hole drilled, the less the pressure was needed for fracturing.

Thiopental Prevents A Beta-Endorphin Response to Cardiopulmonary Bypass (체외순환전 투여된 Thiopental이 Beta-endorphin치 변화에 미치는 영향)

  • Song, Sun-Ok;Carr, Daniel B.;Park, Dae-Pal;Jee, Dae-Lim;Kim, Sae-Yeon
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.350-358
    • /
    • 1997
  • We studied the effects of adding a single bolus(500 mg) of sodium thiopental to a continuous infusion of low-dose fentanyl on plasma beta-endorphin immunoreactivity(iBE) responses to cardiopulmonary bypass(CPB) in 28 patients undergoing elective coronary artery bypass grafting or valve procedures. Thiopental was injected just prior to the initiation of CPB. The iBE levels and the hemodynamic indices such, as mean arterial pressure, cardiac output and systemic vascular resistance were measured before CPB, at 30 min and again at 60 min after the initiation of the bypass. The results were as follows. After the initiation of CPB, iBE levels increased at 30 min and 60 min(P=0.006, P=0.004 respectively) in the control group, but not in the thiopental group. There were significant differences in the changes of iBE levels between the groups(F=8.7, G-G=0.002, P=0.001). The hemodynamic indices were similar in both groups. In conclusion, pretreatment with thiopental just before the initiation of CPB prevents the stress-induced beta-endorphin response to CPB.

  • PDF

Prediction of Intubation after Bronchoscopy with Non-invasive Positive Pressure Ventilation Support in Patients with Acute Hypoxemic Respiratory Failure (급성 저산소혈증 환자에서 비침습적 양압환기 적용 하 기관지경 검사 후 기관 삽관의 예측 인자)

  • Song, Jae-Uk;Kim, Su-A;Choi, E Ryoung;Kim, Soo Min;Choi, Hee Jung;Lim, So Yeon;Park, So Young;Suh, Gee Young;Jeon, Kyeongman
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • Background: Non-invasive positive pressure ventilation (NPPV) ensures adequate gas exchange during bronchoscopy in spontaneously breathing, hypoxemic patients, thus avoiding endotracheal intubation. However, in some patients, endotracheal intubation is eventually required after bronchoscopy. This study investigated the incidence of intubation and predictors of a need for emergency intubation prior to NPPV bronchoscopy initiation. Methods: On a retrospective basis, we reviewed the medical records of 36 patients (median age, 55 years; interquartile range [IQR], 43~65 years) with acute hypoxemic respiratory failure who required NPPV during bronchoscopy between January 2005 and October 2007. Results: All patients were hypoxemic (median $PaO_2/FiO_2$ ratio 155; IQR 90~190), but tolerated bronchoscopy with NPPV support. SOFA score and SAPS II score immediately before NPPV initiation were 4 (3~7) and 36 (30~42), respectively. Seventeen (47%) patients needed endotracheal intubation at a median time of 22 (2~50) hours after bronchoscopy. Patients who needed intubation after bronchoscopy had a higher in-hospital mortality (11 [65%] vs. 4 [21%], p=0.017). Upon multiple logistic regression analysis, the need for intubation after bronchoscopy was independently associated with a $P_aO_2/FiO_2$ ratio (OR, 0.961; 95% CI, 0.924~0.999; p=0.047) immediately before NPPV initiation for bronchoscopy. Conclusion: The severity of the hypoxemia immediately prior to NPPV initiation for bronchoscopy was associated with the need for intubation after bronchoscopy in patients with hypoxemic respiratory failure.

An Evaluation on Rupture Behavior of Nozzle Closure in Multi-Nozzle System (멀티노즐시스템의 노즐마개 파열 거동 분석)

  • Ro, Young-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.745-751
    • /
    • 2014
  • For the multi-nozzle propulsion, the rupture pressure of nozzle closure has an effect on the initial strain rate of ignition. Moreover, the deviation of rupture pressure for each nozzle closure leads to side forces which can disturb the attitude control of rocket. When designed, it should be considered whether nozzle closures are ruptured equally and exactly in the intented pressure. In this paper, the rupture behavior is analyzed by analytical and experimental methods for plate and "+" notched nozzle closures. The rupture pressure and deviation for operating temperature, whether notched or not and notched directions are analyzed. This paper provides a comparison between rupture pressure prediction of finite elements method which tool is Abaqus/Explicit and results of the rupture test. Jonson-Cook shear failure model which corresponds to the damage initiation criterion were used in this simulation.

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

Rebound Pulmonary Hypertension After Nitric Oxide Withdrawal (산화질수(Nitric Oxide) 중단 후의 반동성폐고혈압)

  • 이현우;이재웅;현성열;박철현;박국양;이경천
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.132-138
    • /
    • 2000
  • Background: Inhaled nitric oxide therapy causes selective pulmonary vasodilation in congenital heart diseases with pulmonary hypertension. However discontinuation of inhaled nitric oxide therapy may be complicated by abrupt life-threatening rebound pulmonary hypertension(RPH) The purpose of this study was to prevent by comparing group I(without RPH n=13) and group II(with RPH n=6) to determine the risk factors involved inthe development of the RPH. Material and Method: Between Januarty 6, 1998 and April 14, 1999. we studied 19 consecutive children who were treated with inhaled nitric oxide for clinically significant pulmonary hypertension after an open heart surgery for congenital heart disease. the ratio of males and females was 12:7 ranging in age from 10 days to 6040 days(16 years) To identify the effects of nitric oxide between two groups we measured heart rate mean and systolic pulmonary arterial pressure mean and systolic systemic arterial pressure central venous pressure pH paO2/FiO2 and O2 saturation before and after the initiation and just before the withdrawal of the inhaled nitric oxide. result: In 6 of 19 patients(32%) withdrawal of inhaled nitric oxide caused RPH. In the two groups inhaled nitrix oxide decreased in pulmonary arterial pressure(PAP) without decreasing the systemic arterial pressure(SAP) and increased PaO2/FiO2 Compared with patients who had no RPH(group I) patients who had RPH(group II) were older in age (1204$\pm$1688 versus 546$\pm$1654 days p<0.05) received less nitric oxide therapy(34$\pm$18 versus 67$\pm$46 hours p<0.05) has shorter weaning process(5$\pm$3 versus 15一13 hours p<0.05) and received lowerconcentration of initial nitric oxide supply(11$\pm$8 versus 17$\pm$8 ppm p>0.05) and lower concentration just before the withdrawal nitric oxide(4.2$\pm$2.6 versus 5.6$\pm$2.6 ppm, p>0.05) Conclusion : We speculate that older age shorter of nitric oxide therapy shorter weaning process are the risk factors of RPH.

  • PDF

Effect of rainfall patterns on the response of water pressure and slope stability within a small catchment: A case study in Jinbu-Myeon, South Korea

  • Viet, Tran The;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.202-202
    • /
    • 2016
  • Despite the potentially major influence of rainstorm patterns on the prediction of shallow landslides, this relationship has not yet received significant attention. In this study, five typical temporal rainstorm patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event occurred in 2006 in Mt. Jinbu area. The patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS), in order to assess their influences on pore pressure variation and changes in the stability of the covering soil layer in the study area. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety (FS) decreases and the time required to reach the critical state, are governed by rainstorm pattern. The sooner the peak rainfall intensity occurs, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed rainfall patterns were found to have a greater effect on landslide initiation. More specifically, among the five different patterns, the Advanced storm pattern (A1) produced the most critical state, as it resulted in the highest pore pressure across the entire area for the shortest duration; the severity of response was then followed by patterns A2, C, D1, and D2. Thus, it can be concluded that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of pore pressure, and the occurrence of shallow landslides, both in space and time.

  • PDF