• Title/Summary/Keyword: initial theory

Search Result 880, Processing Time 0.029 seconds

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS

  • Ji, Un Cig
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Within white noise approach, we study the existence and uniqueness of the solution of an initial value problem for generalized white noise functionals, and then as a corollary we discuss the linear stochastic differential equation associated with a convolution of white noise functionals.

A Study on Consolidation Characteristics by Considering the Initial Radial Compression at Sand Pile Adjacent Ground (샌드파일 주변지반에서 초기 방사방향 압축에 의한 압밀특성 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.649-656
    • /
    • 2000
  • Consolidation of the ground surrounding the sand piles is delayed by well resistance and smear effect. This study is executed to understand the factors that affect the characteristics of consolidation. This was accomplished by utilizing the estimated and measured values of the soil properties through the monitoring of the ground surrounding the sand piles. When it is assumed that the horizontal coefficient is equal to the vertical coefficient of consolidation, the estimated values is exceedingly similar to the measured values. The properties of the initially disturbed soil by the sand pile installation seemed to improve through the process of consolidation with the passage of time. From the results of the analysis of the settlement measurement, the measured values occurred about 60~90% of the predicted values. Considering the initial radical compression deformation, according to the theory of cavity expansion, the difference between the two appears to be in good agreement. In this study, to understand the behavioral characteristics of the ground surrounding the sand piles requires estimation through considering the initial radial compression as well as smear effect of the soil disturbance and well resistance.

  • PDF

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.

Design charts for estimating the consolidation times of reclaimed marine clays in Korea

  • Sang-Hyun Jun;Byung-Soo Park;Hyuk-Jae Kwon;Jong-Ho Lee
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • To predict the consolidation behavior of dredged and reclaimed marine clays exhibiting consolidation settlement with large strains, the finite strain consolidation theory must be used. However, challenges in appropriately applying the theory and determining input parameters make design and analysis studies difficult. To address these challenges, design charts for predicting the consolidation settlement of reclaimed marine clays are developed by a numerical approach based on the finite strain consolidation theory. To prepare the design charts, a sensitivity analysis of parameters is performed, and influencing parameters, such as initial void ratio and initial height, as well as the non-linear constitutive void ratio-effective stresspermeability relation, are confirmed. Six representative Korean marine clays obtained from different locations with different liquid limits are used. The design charts for estimating the consolidation times corresponding to various degrees of consolidation are proposed for each of the six representative clays. The consolidation settlements predicted from the design charts are compared to those in previous studies and at an actual construction site and are found to agree well with them. The proposed design charts can therefore be used to solve problems related to the consolidation of reclaimed marine clays having large strains.

ASYMPTOTIC STABILITY OF STRONG SOLUTIONS FOR EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

  • Chen, Pengyu;Kong, Yibo;Li, Yongxiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.319-330
    • /
    • 2018
  • This paper is concerned with the global asymptotic stability of strong solutions for a class of semilinear evolution equations with nonlocal initial conditions on infinite interval. The discussion is based on analytic semigroups theory and the gradually regularization method. The results obtained in this paper improve and extend some related conclusions on this topic.

Effects of Initial Anisotropy in the Plane Sheet on Stretching Process (판재의 초기 이방성이 스트레칭 성형에 미치는 영향)

  • 배석용;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

Modelling of magneto-thermoelastic plane waves at the interface of two prestressed solid half-spaces without energy dissipation

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1299-1323
    • /
    • 2015
  • A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic field, temperature and initial stress on the amplitude ratios after numerical computations are shown graphically with MATLAB software for the particular model.

Effect of Initial Tension on Natural Periods for a Suspension Bridge (현수교 초기장력이 고유주기 산정에 미치는 영향)

  • 김호경;이재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.450-454
    • /
    • 2003
  • Natural periods are usually determined by the so-called linearized finite displacement theory even for a suspension bridge. This linearized method, with formulating structural stiffness by taking dead-load tension into consideration, calculates the natural periods of the bridge. As a result, the assumed initial tensions for each cable member may affect the accuracy of calculated natural periods and some other dynamic responses. This paper mainly demonstrates the effect of initially introduced tension accuracy on the evaluation of dynamic characteristics for a suspension bridge.

  • PDF

Design of Reinforced Concrete Members for Serviceability Based on Utility Theory

  • Lee, Young Hak;Kim, Sang Bum
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 2005
  • A methodology for design of reinforced concrete members for serviceability in general and deflection control in particular is presented based on application of utility theory. The approach is based on minimizing total cost including both initial construction and cost of failure considering variability in structural behavior and various forms of serviceability loss function. The method is demonstrated for the case of a simply supported slab for example.