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Abstract 
 
A methodology for design of reinforced concrete members for serviceability in general and deflection control in particular is presented based 
on application of utility theory. The approach is based on minimizing total cost including both initial construction and cost of failure considering 
variability in structural behavior and various forms of serviceability loss function. The method is demonstrated for the case of a simply 
supported slab for example. 
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1. INTRODUCTION 
 

Ultimate limit states are generally well defined by 
discrete limit states at which discontinuities in structural 
behavior occur. Serviceability limit states such as 
deflection and cracking on the other hand are generally not 
well-defined. Probability-based design requirements for 
strength are now well established and are embodied in 
modern building codes and design specifications in the 
form of load and resistance factors or partial factors. 
Deflection and crack control requirements are still handled 
by empirical rules based largely on previous experience.  

 
In the design of concrete building structures, deflection 

control for floors and roofs is an important design consid-
eration. While the current code procedures have provided 
adequate designs in the past, developments in design prac-
tice such as the use of higher strength materials and longer 
spans leading to more flexible structures, as well increas-
ing expectations by owners for building performance sug-
gest that a more rational approach to design for deflection 
control may be required in the future. Such an approach 
should consider the uncertainties inherent in predicting 
deflections of concrete members and structures as well as 
the difficulties associated with defining acceptable limits 
for deflection of members. This paper explores the applica-
tion of utility theory to the problem. Since serviceability 
failure can occur in structures with adequate safety against 
collapse, the question becomes an economic issue. The 
utility theory approach balances the initial cost of con-
struction against the potential costs of repair considering 
uncertainties associated with structural behavior at service 
load levels, and lack of a well-defined limit for deflection.  

 
The formulation of the approach is based on the work of 

Reid and Turkstra (1980, 1981) and Turkstra and Reid 
(1981) at McGill University. A deterministic model is used 
to calculate deflections for a member with defined time-

dependent material properties and loading history. Monte 
Carlo simulation is then used to develop histograms of 
deflection with assumed statistical distributions for the 
input parameters. A loss function is then defined that 
specifies the onset of damage due to deflection and an 
upper limit at which the structure is assumed to be 
unusable. Both discrete (or step-wise) functions and 
continuous functions are considered in the applications. 
Utility theory is then applied to maximize utility for the 
member by minimizing the total cost considered as the 
sum of the initial cost and the probabilistically determined 
cost of failure. In this study two types of damage are 
considered explicitly; perception of deflection and damage 
to non-structural elements. 

 
The paper presents the basic formulation of the problem 

based on utility theory and discusses the types of 
serviceability loss function considered. Costs of 
construction and costs of failure are then discussed. The 
application of the method is illustrated through a one-way 
slab example for which the optimum (maximum utility, 
minimum total cost) thickness of the slab is calculated. 
Suggestions for further research to fully develop the 
capability of the approach are presented. 

 
2. UTILITY THEORY APPROACH 

 
Following the formulation presented by Reid and Turk-

stra (1980, 1981), serviceability is considered as a specific 
type of structural utility, U, which can be expressed as: 

 ∑−−=
i iFcICBU                (1) 

where, 
B = benefit derived from fully serviceable structure 
CI = initial construction cost 

iFc = )(
L
iF

iFC
∆

× , cost due to failure in mode i 
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iFC = cost of failure due to being completely 

unserviceable in mode i 

i∆ = deflection in mode i 

L = span length of a member 

)(
L
iF

∆
= serviceability loss function as a function of 

deflection to span length ratio in mode i. 
 
Mode i corresponds to the various structural effects such as 
elastic deflection, creep, and shrinkage. The cost due to 

failure in mode i is calculated by multiplying )(
L
iF

∆
, 

serviceability loss function by 
iFC , the cost of failure 

due to being completely unserviceable. Forms of the 
serviceability loss function are discussed below. 
 
Considering failure in a particular mode i, the utility 
function may be expressed as: 

)()(
L
i

FcICB
L
iu

∆
−−=

∆
  (2) 

where, 

u(
L
i∆ ) = utility function for failure mode i 

)(
L
i

Fc
∆

= failure cost function for failure mode i 

 
Noting that i∆  is a random variable, a generalized 

measure of structural utility with regard to failure mode i is 

expected utility, E[Ui]. Expressing 
L
i∆ as ix  in Eq. (2), 

the expected utility is defined as: 
[ ] ∫

∞
∞−= idxixfixuiUE )()(   (3a) 

where, )( ixf = probability density function of ix . 

 
Substituting Eq. (2) into Eq. (3a) gives; 

E[Ui] = ⎥⎦
⎤

⎢⎣
⎡ ∫
∞

∞−
−− idxix

ixfixFFCICB )()(   (3b) 

Eq. (3b) can be converted into discrete type as follows: 

 E[Ui] = ∑
=

−−
n

i ixpixFFCICB
1

)()(    (3c) 

where, )( ixp is probability mass function of ix  in a 

given member. 
 

In order to evaluate the expected utility, first, the utility 
should be defined as a function of a variable and second, 
the probability mass function of that variable should be 
determined based on appropriate load-time history and 
structural response models. For a given member, if the 

benefit associated with a fully serviceable structure is 
taken as a constant, the minimized total cost consisting of 
initial construction cost plus cost of serviceability failure 
can be obtained so as to maximize the value of utility. The 
initial construction cost and cost of failure can be assumed 
to vary with some structural parameter such as the depth of 
a member, h. 

If the member depth is taken as the structural parameter, 
the initial construction cost will generally increase with 
increasing size of member while the cost of serviceability 
failure due to excessive deflection can be expected to 
decrease as the member depth increases. As illustrated in 
Fig. 1, the optimum member depth can be determined 
where the total cost function is a minimum. The initial cost 
function can be determined by designing a series of beams 
with varying depths, computing weights or volumes of 
resulting materials and using available unit costs for 
materials in place to determine the cost for each member 
design, while the serviceability failure costs can be 
estimated by assuming serviceability loss functions and 
applying these functions to histogram of deflection to span 
length ratio of each member design that can be obtained 
from probabilistic approaches such as Monte Carlo 
simulation. An expected value of utility with respect to a 
particular mode of failure is completely defined by 
relevant serviceability loss functions and histograms of the 
utility parameter. Particular characteristics of serviceability 
loss functions associated with a discontinuous 
serviceability loss function and a continuous serviceability 
loss function are discussed in the following section. 
 

hopt Member depth, h

CI + CF

CI

CF

hopt Member depth, h

CI + CF

hopt Member depth, hhopt Member depth, hhopt Member depth, h

CI + CF

CI

CF

 
Figure 1. Function of member depth, h. 

 
 
Discontinuous serviceability loss function 

A discontinuous serviceability loss function is a function 
that takes stepped values corresponding to the bounds at 
discrete failure points on its parameter such as deflection 
ratio to span length. For example, one-step discontinuous 
serviceability loss function, )( ixh  discontinuous at a 

failure point, 
if

x is expressed in Eq.(4).  

∑
=

⋅−−=
n

i ixhixpFCICBixu
1

)()()(      (4) 
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where, 
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Fig. 2 shows a deflection histogram and discontinuous 
serviceability loss function conceptually. The histogram 
developed by Monte Carlo simulation describes the 
variability of deflection for a particular member. The 
probability of obtaining a value associated with a 
particular cell is p(x). The loss function h(x) is taken to be 
zero up to a specified threshold value and unity beyond 
that value. A complete serviceability failure is assumed to 
occur at the specified threshold value. The cost of failure 
increases as the overlap between the loss function and the 
histogram increases. In other words as the threshold value 
increases the cost of failure decreases. 
 

 
Figure 2. Probability histogram of deflection and discontinuous 

            serviceability loss function. 
 
 
Continuous serviceability loss function 

In most cases serviceability failure does not occur 
suddenly at a particular threshold value. In general a 
deflection value can be defined below which no damage or 
failure is detected. As the deflection increases beyond this 
value the extent of damage also increases until a stage is 
reached at which the structure can be considered to be 
completely unusable. Fig. 3 shows a histogram for 
deflection of a given beam. Superimposed on the figure is 
a continuous serviceability loss function which varies from 
zero at a particular deflection limit to unity at a higher 
deflection limit. The lower limit can be considered as the 
deflection limit at which no damage is detected in which 
case there is no failure cost. The upper limit represents the 
onset of a completely unserviceable structure with an 
associated cost to remedy. Such a representation reflects 
the fact that there is usually not a crisp delineation between 
a serviceable and unserviceable structure. The costs of 
failure include not only construction costs of repairs but 
also costs of loss of production to the owner during repairs. 
One could also consider the cost of loss of reputation to 
the structural engineer as a result of the failure. As was the 

case for the discontinuous loss function, the greater the 
overlap between the deflection density function and the 
serviceability loss function, the higher will be the expected 
cost of failure. 

Based on the results of surveys of buildings estimates of 
deflection corresponding to the onset of damage or failure 
due to deflection can be obtained. Hossain and Stewart 
(2001) reviewed survey data and proposed probabilistic 
models of damaging deflections for floor elements. They 
classified the models into two kinds: partition wall damage 
and perception damage. Perception damage is defined as 
deflection sagging in a structural element that is noticeable 
to occupants and disturbing to people causing problems 
such as excessive curvature in floor with visual sagging, 
slanting furniture and floor finishing damage. Partition 
wall damage model is defined as damage to non-structural 
partition walls due to floor deflection. According to their 
study, the minimum value of the deflection to span length 
ratio for which perception damage was reported is 0.003. 
An earlier study by Mayer and Rusch (1967) also 
concluded that a deflection to span length ratio of up to 
1/300 is not found to be visually disturbing. Table 1 shows 
the statistics obtained by Hossain and Stewart based on 
their review of deflection survey data. These data can be 
used to specify the upper and lower limits of the 
serviceability loss function and the cumulative density 
function can be used to define the loss function between 
the two limits.  
 

Table 1. Statistical parameters of damaging deflections ( L/∆ ) 
 (Hossain and Stewart 2001). 

 
Parameter Perception damage Partition wall damage 

Sample size 60 51 
Minimum value 0.0030 0.0006 
Maximum value 0.0171 0.0135 
Mean 0.0077 0.0054 
C.O.V 0.42 0.57 
Distribution Truncated lognormal Gamma 

 
 

 
Figure 3. Probability histogram of deflection and continuous 

             serviceability loss function. 
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3. COST INFORMATION 
 
Data for the cost of initial construction and cost of fail-

ure are needed for implementation of the utility theory 
approach described earlier. For this study , RS Means 
building construction cost data (2002) is used for calculat-
ing cost of initial construction and RS Means repair and 
remodeling cost data (2002) for cost of failure. The cost 
due to loss of production is determined based on the na-
tional compensation survey data published by Bureau of 
Labor Statistics, U.S Department of Labor (2003). 
 
Cost of initial construction 

The cost of initial construction cost consists of form-
work, reinforcement, concrete, finishing, curing, installa-
tion of reinforcement, pouring the concrete and shoring. 
Each unit cost includes the overhead and the profit of con-
tractors. Table 2 shows the unit prices of each item based 
on Year 2002 data. To simplify the problem, only the cost 
of the floor itself was considered. For a complete analysis, 
the effect of varying the floor depth on column and foun-
dation costs should also be considered.  
 

Table 2. Initial construction cost data. 

Item Unit price Remarks 

Formwork,  
$/m2 ($/ ft2) 60.00 (5.40) 

Plywood to 
4.57 m 

( 51 ′ ) high, 
3 use 

Reinforcement,  
$/ton[metric] 
($/ton[short]) 

1444.44 (1,300.00) Grade 60, 
A615 

cf ′= 20.69 MPa 

(3,000 psi) 
100.00 
(76.00) 

Concrete, $/m3 
($/C.Y) 

cf ′= 27.58 MPa 

(4,000 psi) 
107.24 
(81.50) 

Concrete 
ready mix, 

Normal 
weight 

<h 15.24 cm 
(6˝ ) 

32.90 
(25.00) 

15.24cm ≤h≤ 
25.4cm 

( 016 ′′≤≤′′ h ) 
28.95 

(22.00) 
Placing concrete, 

$/m3 ($/C.Y) 

>h 25.4 cm 
(10˝ ) 

25.40 
(19.30) 

Pumped 

Finishing, $/m2 
($/ft2) 25.40 (1.10 ) 

Integral 
topping and 
finish, using 
1:1:2 mix, 
0.48 cm 

(3/16″) thick

Curing, $/m2 ($/ft2) 6.11 (0.55) Curing 
blankets 

Shoring $78.00/EA. 
3538.02 kg 

(7800 #) 
capacity 

 

Loss of production 
In general, the disruption cost of serviceability failure 

comprises the loss of production during the time required 
for repair. An upper bound to this cost is assumed to corre-
spond to roughly 4 weeks of lost production for the af-
fected work area, which is twice the failed floor area. A 
monetary estimate of this loss is obtained by assuming that 
the monetary value of the productivity of an office worker 
is the associated payment received by the worker. Accord-
ing to the survey data conducted by Bureau of Labor Sta-
tistics, U.S. department of Labor (2002), annual average 
earning of full-time workers is approximately $36,484. 
Assuming that an office worker occupies roughly 150 ft2 
of office floor area, a typical office production rate is 
roughly $243/yr./ft2 of serviceable floor area. This amount 
is converted to $20.25/4 weeks/ft2. Assuming that the area 
disrupted for repair is twice the failed floor area (Reid and 
Turkstra, 1981) this unit cost should be multiplied by 2. If 

the deflection is greater than 
240

L , it is assumed that the 

level below will also be affected by the repairs. Thus, a 
reasonable upper bound to the disruption cost of service-
ability failure is estimated to be $81/ft2 of failed floor area. 
For the loss of production case a two-step discontinuous 
loss function is assumed as shown in Fig. 4. 

The expected loss of production cost is expressed as: 

∑
=

∆
⋅

∆
=

n

i L
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L
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1
)()()(   (5) 

where, 
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n = number of simulations or classes 
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L
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Cost of failure for repair 
This part of cost of failure is a direct cost for repair, 

which consists of cut-out demolition cost and replacement 
cost including material cost, labor cost and contractor’s 
overhead & profit. Detailed cost data based on RS Means 
(2002) are presented in Table 3. The expected cost of fail-
ure for repair can be obtained by using the continuous ser-
viceability loss function. To calculate the expected cost of 
failure for repair )( RFcE  with histogram of deflection, 
following equation is applied: 
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Figure 4. Two-step discontinuous serviceability loss function and 

           histogram of deflection. 
 

∑
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where, RFC  is cost of failure for repair due to fully 

unserviceable and )(xF is the continuous serviceability 
loss function as described earlier. 
 

Table 3. Repair cost data. 
 

Type Item Unit price 

≤ 0.17 m3 (6 ft3) 1395.76 (39.50)Cutout 
demolition, 
$/m3 ($/ft3) 

> 6 ft3 (0.17 m3) 1254.42 (35.50)

17.78 cm (7″) 
thickness 168.89 (15.20) 

20.32 cm (8″) 
thickness 179.44 (16.15) 

22.86 cm (9″) 
thickness 187.78 (16.90) 

Slab 

Replacement, 
$/m2 ($/ft2) 

25.4 cm (10″) 
thickness 198.89 (17.90) 

 
4. EXAMPLE OF APPLICATION TO A ONE-WAY 
SLAB 

 
To demonstrate the application of the method, the opti-

mum thickness for a one-way slab is considered as an ex-
ample. To obtain the histogram of computed deflections a 
deterministic model and a set of statistics for input pa-
rameters are needed to perform Monte Carlo simulation.  
 
Deterministic deflection model 

A layered beam finite element model developed by Choi 
et al. (2004) provides the basis for the deterministic model. 

Concrete is assumed to be linear elastic in tension and 
compression under immediate loading. A linear post-peak 
decreasing branch in stress-strain diagram is considered to 
model the tension stiffening effect of concrete between 
cracks. If the tensile strength in a given layer is exceeded 
in each element, the analysis is repeated with a reduced 
modulus of elasticity. This process is repeated until the 
stress remains within the stress-strain envelope. The slope 
of the post-peak branch is defined by a tension stiffening 
parameter β = εtu / εti.  
Creep under sustained load is considered using the age-
adjusted effective modulus proposed by Trost (1967): 

)1( t

ciE
caE

φχ+
=       (7) 

where, Eci is the instantaneous modulus of elasticity, χ is 
the aging coefficient and φt is the creep coefficient at time t 
defined as the ratio of creep strain at time t to initial elastic 
strain.  
 
For the creep coefficient, a simple model presented by ACI 
Committee 209 (1992) based on Branson’s work (1963) is 
used for standard conditions as follows: 

u
t

t
t φφ 6.010

6.0

+
=      (8) 

where, φu is the ultimate creep coefficient and t is the time 
after loading.  
 
Also, for the effect of shrinkage, simple procedure sug-
gested by ACI Committee 209 (1992) is adopted in this 
study. A typical two-dimensional beam element with three 
degrees of freedom at each end (one rotation and two dis-
placements) was used to form the finite element model.  
 
Parameter variability 
Material properties and dimensions are assumed to be ran-
dom variables with the statistical values listed in Table 4. 
 
Loads 

In order to compute the incremental deflection after in-
stal-lation of non-structural components the construction 
se-quence and load history must be known. Fig. 5 shows a 
typical schematic load vs. time history for a slab system in 
a multi-story structure (Graham and Scanlon 1988). Dur-
ing construction, the load increases as floors above are 
supported temporarily on floors below. After construction, 
the load drops to the sustained load level. An increment in 
sustained load is added when non-structural components 
are installed. Live load is then applied intermittently dur-
ing the service life of the structure. A simplified load vs. 
time history is shown in Fig. 6. A single instantaneous ap-
plication of construction load, Wco is applied at time t1. The 
load then drops to the sustained load level ( sW ) and re-
mains constant thereafter. A single application of the non-
sustained portion of live load, varlW  is shown at time t3.  
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Table 4. Probability model of random variables 

Variable Mean C.O.V S.D Source 

cf ′ , 
MPa 
(psi) 

cc ff ′≤+′ 15.158.7675.0  

(
cc ff ′≤+′ 15.1100,1675.0 ) 0.176 - Mirza et 

al. 1979 

rf , 
MPa 
(psi) 

cf ′69.0 , (
cf ′3.8 ) 0.218 - Mirza et 

al. 1979 C
on

cr
et

e 
(in

-s
itu

) 

cE , 

MPa 
(psi) 

cf ′21.5015 , 

(
cf ′400,60 ) 

0.119 - Mirza et 
al. 1979 

sA  
nA99.0  0.024 - 

Mirza 
and 

MacGreg
or 1979 

R
ei

nf
or

ce
m

en
t 

sE , 

MPa 
(ksi) 

201,326.91 (29,200) 0.024 - Julian 
1966 

b, cm 
(in.) 

0.397+nb , (
32
5

+nb ) 0.045 - Naaman 
1982 

B
ea

m
 d

im
en

si
on

 

sbst dd ,
, cm 
(in.) 

0.159+snd , (
16
1

+snd ) nh
27.0 , 

(

nh
68.0 ) - Naaman 

1982 

Construction

Installation of Non-structural Element

t1  t3 t2

Wlvar

Ws

Load , W

Time

 

Figure 5. Schematic load-time history. 

Installation of non-structural components is conserva-
tively assumed to occur at time t1. In addition, previous 
load surveys show that the average tenancy duration is 8 
years and that most buildings will have eight different ten-
ants (Ellingwood and Culver 1977). In the simplified load-
time history model time t3, is assumed to be 8 years. Dead 
load, sustained live load and instantaneous additional live 
load are assumed to be the load components acting on the 
office floor during its service life. Also, sustained live load 
and instantaneous live load are subject to influence area of 
floor. Probabilistic models for these loads are given in Ta-
ble 5. 

Load

Time

Wco

Wlvar

Ws

t1 t3  
(a) Simplified load-time history with probabilistic approach 

Time

Deflection, ∆

t1 t3

∆co

∆s

∆lvar
∆inc

 
(b) Simplified deflection-time history 

Figure 6. Simplified load-time history with probabilistic approach and 
corresponding deflection-time history. 

Table 5. Probability model of random variables. 

Load Statistical  
parameters 

Distribu
tion Source 

Formwor
k load 

mean=0.11 Dn 
COV=0.10 Normal El-Shahhat 

et al. 1993

Sustaine
d 

construct
ion live 

load 

mean=0.29 kPa (6.0 psf) 
COV=1.10 Gamma

Ayoub and 
Karshenas 

1994 

C
on

st
ru

ct
io

n 
lo

ad
 

Stacking 
load 

mean=0.974 kPa (20 psf), 
COV=0.60 Gamma

Ayoub and 
Karshenas 

1994 

Dead load mean=1.05 Dn, COV=0.10 Normal Stewart 
1996 

Sustaine
d live 
load 

kPa 0.56=lsusµ  

( psf6.11 )

κσ
Alsus

65002.262 +=  
Gamma

Ellingwood 
and Culver 

1977 

Li
ve

 lo
ad

 

Extraordi
nary live 

load 

A
RQ

E

λµµ
µ = , 

2

222
2 (

A
QRRQ

E

µσµµµλκ
σ

++
=

 

Gamma
Ellingwood 
and Culver 

1977 

Note: Dn= Nominal deal load; κ =2.76, (
QQ σµ ,

)=(7.305, 1.218) [kPa], 

(150, 25) [psf]; (
RR σµ , )=(4, 2), 2m 36;

3.6
155

≥
−

= AAλ  (400 ft2).

 

Sensitivity analysis 
For the example, a simply supported one-way slab with 

a span length of 4.57 m (15 ft) and live load of 2.4 kPa (50 
psf) was selected. Analyses were performed to assess the 
sensitivity of the results to assumed parameters. Specifi-
cally the lower bound on the sensitivity loss function was 
varied by plus or minus 30 %, the initial construction cost 
was varied by plus or minus 10 %, and the cost of failure 
was varied by plus or minus 10 %. The results, total costs  
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Figure 7. Effect of variation of lower bound of serviceability loss function 
of one-way slab. 
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Figure 8. Effect of variation of cost of initial construction of one-way slab. 
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Figure 9. Effect of variation of cost of failure of one-way slab. 

versus span length are illustrated in Fig. 7 to 9. As shown 
in the figures, the optimum thickness is calculated as 178 
mm (7 in.) in each case. 

As the application of the method, validity of ACI 318 
minimum thickness requirement for both ends continuous 
one-way slabs are examined with the proposed utility the-
ory. Table 6 shows geometric parameters of one-way slabs 
to examine the validity of ACI 318 minimum thickness 
requirement for both ends continuous condition. Live loads 
are assumed to be 2.4 kPa (50 psf) and 4.8 kPa (100 psf) at 
0.95 of cumulative density function of the loading model 
respectively. After conducting Monte Carlo simulation, 
polynomial curve fitting is applied to a set of thicknesses 
in a given span length to estimate an optimized thickness.  

Table 6. Geometric parameters of both ends continuous one-way slabs 

Length, 
mm (in.) Depth, mm (in.) 

4572 
(180) 114.3 (4.5); 139.7 (5.5); 165.1 (6.5). 190.5 (7.5); 215.9 (8.5) 

6096 
(240) 114.3 (4.5); 165.1 (6.5); 215.9 (8.5); 266.7 (10.5); 317.5 (12.5)

7620 
(300) 177.8 (7.0); 228.6 (9.0); 279.4 (11.0); 330.2 (13.0); 381 (15.0) 

9144 
(360) 

228.6 (9.0); 279.4 (11.0); 330.2 (13.0); 381.0 (15.0); 431.8 
(17.0) 

10668 
(420) 

279.4 (11.0); 330.2 (13.0); 381.0 (15.0); 431.8 (17.0); 482.6 
(19.0) 

12192 
(480) 

330.2 (13.0); 381.0 (15.0); 431.8 (17.0); 482.6 (19.0); 533.4 
(21.0) 

 

Table 7. Comparison between optimized thickness obtained by utility 
analysis and ACI 318 minimum thickness limit for both ends 
continuous one-way slab. 

Span length, 
mm (inch) 

Optimized 
thickness, mm, 

(inch) 

ACI 318-02, mm 
(inch) Difference 

4572 (180) 114.3 (4.50) 163.32 (6.43) -49.02 (-1.93) 

6096 (240) 193.04 (7.60) 217.68 (8.57) -24.64 (-0.97) 

7620 (300) 284.48 (11.20) 272.03 (10.71) 12.45 (0.49) 

9144 (360) 381.0 (15.00) 326.64 (12.86) 54.34 (2.14) 

10668 (420) 464.82 (18.30) 381.0 (15.00) 83.82 (3.30) 

12192 (480) 533.4 (21.00) 435.36 (17.14) 98.04 (3.86) 
 

0
5

10
15
20
25
30
35
40
45

4572 6096 7620 9144 10668 12192

Length (mm)

L/
H

180 240 300 360 420 480

Length (in.)

LL=50 psf LL=100 psf ACI 318
 

Figure 10. Comparison between optimized thickness of both ends 
continuous one-way slab and ACI 318 limit. 

Table 7 and figure 10 show the result of the analysis. 
ACI 318 limit is conservative than the optimized thick-
nesses until around 300 inches span length, and it becomes 
minutely unconservative afterward. And, both live loads 
cases are almost consistent with each other. 

 
5. SUMMARY AND CONCLUSIONS 

 
A framework and methodology have been provided that 

can serve as a rational approach to design of concrete 
structures for deflection control in particular and service-
ability design in particular. The use of utility theory pro-
vides a means of minimizing the total cost considering 
both initial construction cost and probabilistic cost of fail-
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ure. This approach can be used to assess the reliability of 
code provisions for deflection control. Further research is 
needed to refine the serviceability loss functions for a 
range of serviceability requirements and to assemble cost 
data for various repair scenarios. For example in this 
analysis only repair of the slab it self was considered. Re-
pair of non-structural partitions and other cases should also 
be considered. 
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APPENDIX 

 
Following parameters are used in Tables 4: 

sA  = area of reinforcement 
b = width of beam 
COV = coefficient of variation 

sbd  = distance from top fiber to centroid of bottom steel 
std  = distance from top fiber to centroid of top steel 

cE  = modulus of elasticity for concrete 
sE  = modulus of elasticity for steel 

cf ′  = concrete compressive strength 
rf  = modulus of rupture 

Following parameters are used in Table 5: 
A = influence area 
Dn = nominal deal load 
µ  = mean 
σ  = standard deviation 
λ  = parameter for extraordinary live load 
κ  = constant of sustained live load 
Subscripts: 
Lsus = sustained live load 
E = extraordinary live load 
Q = weight of a single concentrated load in the cell 
R = number of loads per cell 

( Data of Submission : 2005. 8.21) 




