• Title/Summary/Keyword: initial gut microbiota

Search Result 10, Processing Time 0.025 seconds

Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1067-1071
    • /
    • 2020
  • To understand the formation of initial gut microbiota, three initial fecal samples were collected from two groups of two breast milk-fed (BM1) and seven formula milk-fed (FM1) infants, and the compositional changes in gut microbiota were determined using metagenomics. Compositional change analysis during week one showed that Bifidobacterium increased from the first to the third fecal samples in the BM1 group (1.3% to 35.1%), while Klebsiella and Serratia were detected in the third fecal sample of the FM1 group (4.4% and 34.2%, respectively), suggesting the beneficial effect of breast milk intake. To further understand the compositional changes during progression from infancy to childhood (i.e., from three weeks to five years of age), additional fecal samples were collected from four groups of two breast milk-fed infants (BM2), one formula milk-fed toddler (FM2), three weaning food-fed toddlers (WF), and three solid food-fed children (SF). Subsequent compositional change analysis and principal coordinates analysis (PCoA) revealed that the composition of the gut microbiota changed from an infant-like composition to an adult-like one in conjunction with dietary changes. Interestingly, overall gut microbiota composition analyses during the period of progression from infancy to childhood suggested increasing complexity of gut microbiota as well as emergence of a new species of bacteria capable of digesting complex carbohydrates in WF and SF groups, substantiating that diet type is a key factor in determining the composition of gut microbiota. Consequently, this study may be useful as a guide to understanding the development of initial gut microbiota based on diet.

Effects of Dietary Supplementation with Immunogen® on Growth, Hematology and Gut Microbiota of Fingerling Common Carp Cyprinus carpio

  • Amirkolaie, Keramat;Rostami, B.
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.379-385
    • /
    • 2015
  • We studied the effects of the proprietary prebiotic Immunogen$^{(R)}$ on the growth, hematology and gut microbiota of common carp fingerlings. A basal diet was formulated using common feed ingredients and supplemented with Immunogen$^{(R)}$ at concentrations of 0, 5, 10, 20 and $40g\;kg^{-1}$, each of which was tested experimentally on replicated groups of fish. The trials ran for 8 weeks. Common carp fingerlings with an initial weight of $4.82{\pm}0.05g$ were randomly distributed among the experimental tanks at a stocking density of 25 fish per tank. The experimental diets were provided thrice per day; on each occasion the fingerlings were given a weight of feed that amounted to 4% of fish biomass. At the end of the experimental period, we determined the growth performance, feed conversion ratio, hematological parameters, body composition and gut micro-flora parameters of the test fish. Inclusion of $5g\;kg^{-1}$Immunogen$^{(R)}$ in the diet significantly improved growth performance and feed utilization in comparison with controls. However, the whole-body composition of the fish was not significantly influenced by prebiotic inclusion. Inclusion of $5g\;kg^{-1}$ Immunogen$^{(R)}$ significantly increased the total bacterial and Lactobacillus counts in fish intestines, but these bacterial parameters were significantly negatively impacted by higher concentrations of the prebiotic. Red blood cells counts were increased by prebiotic dietary supplementation at concentrations of 5 and $10g\;kg^{-1}$ prebiotic. Glucose and cholesterol levels were elevated by administration of Immunogen$^{(R)}$. Thus, dietary supplementation with $5g\;kg^{-1}$ Immunogen$^{(R)}$ improved fingerling common carp growth performance and feed utilization, and beneficially influenced the gut microflora

Effect of increasing levels of rice distillers' by-product on growth performance, nutrient digestibility, blood profile and colonic microbiota of weaned piglets

  • Cong, Oanh Nguyen;Taminiau, Bernard;Kim, Dang Pham;Daube, Georges;Van, Giap Nguyen;Bindelle, Jerome;Fall, Papa Abdulaye;Dinh, Ton Vu;Hornick, Jean-Luc
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.788-801
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effects of diets containing different wet rice distillers' by-product (RDP) levels on growth performance, nutrient digestibility, blood profiles and gut microbiome of weaned piglets. Methods: A total of 48 weaned castrated male crossbred pigs, initial body weight 7.54±0.97 kg, and age about 4 wks, were used in this experiment. The piglets were randomly allocated into three iso-nitrogenous diet groups that were fed either a control diet, a diet with 15% RDP, or a diet with 30% RDP for a total of 35 days. Chromium oxide was used for apparent digestibility measurements. On d 14 and d 35, half of the piglets were randomly selected for hemato-biochemical and gut microbiota evaluations. Results: Increasing inclusion levels of RDP tended to linearly increase (p≤0.07) average daily gain on d 14 and d 35, and decreased (p = 0.08) feed conversion ratio on d 35. Empty stomach weight increased (p = 0.03) on d 35 while digestibility of diet components decreased. Serum globulin concentration decreased on d 14 (p = 0.003) and red blood cell count tended to decrease (p = 0.06) on d 35, parallel to increase RDP levels. Gene amplicon profiling of 16S rRNA revealed that the colonic microbiota composition of weaned pigs changed by inclusion of RDP over the period. On d 14, decreased proportions of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge, and increased proportions of Prevotellaceae_ge, Prevotella_2, and Prevotella_9 were found with inclusion of RDP, whereas opposite effect was found on d 35. Additionally, the proportion of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge in RDP diets decreased over periods in control diet but increased largely in diet with 30% RDP. Conclusion: These results indicate that RDP in a favorable way modulate gastrointestinal microbiota composition and improve piglet performance despite a negative impact on digestibility of lipids and gross energy.

Oral Administration of β-Glucan and Lactobacillus plantarum Alleviates Atopic Dermatitis-Like Symptoms

  • Kim, In Sung;Lee, Seung Ho;Kwon, Young Min;Adhikari, Bishnu;Kim, Jeong A;Yu, Da Yoon;Kim, Gwang Il;Lim, Jong Min;Kim, Sung Hak;Lee, Sang Suk;Moon, Yang Soo;Choi, In Soon;Cho, Kwang Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1693-1706
    • /
    • 2019
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease of mainly infants and children. Currently, the development of safe and effective treatments for AD is urgently required. The present study was conducted to investigate the immunomodulatory effects of yeast-extracted β-1,3/1,6-glucan and/or Lactobacillus plantarum (L. plantarum) LM1004 against AD-like symptoms. To purpose, β-1,3/1,6-glucan and/or L. plantarum LM1004 were orally administered to AD-induced animal models of rat (histamine-induced vasodilation) and mouse (pruritus and contact dermatitis) exhibiting different symptoms of AD. We then investigated the treatment effects on AD-like symptoms, gene expression of immune-related factors, and gut microbiomes. Oral administration of β-1,3/1,6-glucan (0.01 g/kg initial body weight) and/or 2 × 1012 cells/g L. plantarum LM1004 (0.01 g/kg initial body weight) to AD-induced animal models showed significantly reduced vasodilation in the rat model, and pruritus, edema, and serum histamine in the mouse models (p < 0.05). Interestingly, β-1,3/1,6-glucan and/or L. plantarum LM1004 significantly decreased the mRNA levels of Th2 and Th17 cell transcription factors, while the transcription factors of Th1 and Treg cells, galactin-9, filaggrin increased, which are indicative of enhanced immunomodulation (p < 0.05). Moreover, in rats with no AD induction, the same treatments significantly increased the relative abundance of phylum Bacteroidetes and the genus Bacteroides. Furthermore, bacterial taxa associated with butyrate production such as, Lachnospiraceae and Ruminococcaceae at family, and Roseburia at genus level were increased in the treated groups. These findings suggest that the dietary supplementation of β-1,3/1,6-glucan and/or L. plantarum LM1004 has a great potential for treatment of AD as well as obesity in humans through mechanisms that might involve modulation of host immune systems and gut microbiota.

Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs

  • Hyunwoong Jo;Geongoo Han;Eun Bae Kim;Changsu Kong;Beob Gyun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.340-352
    • /
    • 2024
  • This study measured the potential changes of the microbiota in the gastrointestinal tract and energy and nutrient digestibility by supplemental bacteriophages in pigs. Twelve castrated male pigs (initial mean body weight = 29.5 ± 2.3 kg) were surgically cannulated using T-cannula. The animals were housed individually in pens equipped with a feeder and a nipple waterer. The pigs were allotted to 1 of 3 experimental diets in a quadruplicated 3 × 2 Latin square design with 3 experimental diets, 2 periods, and 12 pigs resulting in 8 replicates per diet. The 3 diets were a control mainly based on corn and soybean meal with no antibiotics or bacteriophages, a diet containing 0.1% antibiotics, and a diet containing 0.2% bacteriophages. On day 5 of the experimental period, feces were collected and on days 6 and 7, ileal digesta were collected. Genomic DNA for bacteria were extracted from the ileal digesta and feces and the V4 region of the 16S rRNA gene was amplified. The ileal and fecal digestibility of energy, dry matter, organic matter, crude protein, and fiber was unaffected by dietary antibiotics or bacteriophages. At the phylum level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Firmicutes (p = 0.059) and a lower proportion of Bacteroidetes (p = 0.099) in the ileal digesta samples compared with the control group with no difference between the antibiotic and bacteriophage groups. At the genus level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Lactobacillus (p = 0.062) and a lower proportion of Bacteroides (p = 0.074) and Streptococcus (p = 0.088) in the ileal digesta compared with the control group with no difference between the antibiotic and bacteriophage groups. In the feces, supplemental antibiotics or bacteriophages reduced the proportion of Bifidobacterium compared with the control group (p = 0.029) with no difference between the antibiotic and bacteriophage groups. Overall, supplemental antibiotics and bacteriophages showed positive effect on the microbiota of in the ileal digesta without largely affecting energy or nutrient digestibility, with no differences between the antibiotic and bacteriophage groups in growing pigs.

Evaluation of the Colonization of Lactobacillus plantarum in Mouse Gut by Terminal Restriction Fragment Length Polymorphism Analysis (Terminal Restriction Fragment Length Polymorphism 분석을 이용한 Lactobacillus plantarum의 생쥐 장관 정착 평가)

  • Jung, Gwangsick;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • T-RFLP (terminal restriction fragment length polymorphism) analysis, one of the most highly adopted culture-independent microbial community analysis methods, was applied to evaluate the colonization of probiotics in experimental animal gut. Lactic acid bacteria that exhibited cinnamoyl esterase activity were isolated from Korean fermented vegetables and identified by 16S ribosomal RNA sequence analysis. Lactobacillus plantarum KK3, which demonstrated high chlorogenic acid hydrolysis by cinnamoyl esterase activity, and acid/bile salt resistances, was cultured, freeze-dried, and fed to mice and the microbiota in their feces were monitored by T-RFLP analysis. The T-RF of L. plantarum was detected in the feces of mice after the start of administration and lasted at least 31 days after the initial 7 day feeding. T-RFLP analysis was considered a useful tool to evaluate the gut colonization of probiotic L. plantarum. In order to prove that L. plantarum was from viable cells, we reisolated L. plantarum in the feces using cinnamoyl esterase activity media as the screening step. The colonization of L. plantarum KK3 in the mouse gut was confirmed by this research.

Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs

  • Choi, Yohan;Hosseindoust, Abdolreza;Goel, Akshat;Lee, Suhyup;Jha, Pawan Kumar;Kwon, Ill Kyong;Chae, Byung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.64-70
    • /
    • 2017
  • Objective: In the present study, role of increasing levels of Ecklonia cava (seaweed) supplementation in diets was investigated on growth performance, coefficient of total tract apparent digestibility (CTTAD) of nutrients, serum immunoglobulins, cecal microflora and intestinal morphology of weanling pigs. Methods: A total of 200 weaned pigs (Landrace${\times}$Yorkshire${\times}$Duroc; initial body weight $7.08{\pm}0.15kg$) were randomly allotted to 4 treatments on the basis of body weight. There were 5 replicate pens in each treatment including 10 pigs of each. Treatments were divided by dietary Ecklonia cava supplementation levels (0%, 0.05%, 0.1%, or 0.15%) in growing-finishing diets. There were 2 diet formulation phases throughout the experiment. The pigs were offered the diets ad libitum for the entire period of experiment in meal form. Results: The pigs fed with increasing dietary concentrations of Ecklonia cava had linear increase (p<0.05) in the overall average daily gain, however, there were no significant differences in gain to feed ratio, CTTAD of dry matter and crude protein at both phase I and phase II. Digestibility of gross energy was linearly improved (p<0.05) in phase II. At day 28, pigs fed Ecklonia cava had greater (linear, p<0.05) Lactobacillus spp., fewer Escherichia coli (E. coli) spp. (linear, p<0.05) and a tendency to have fewer cecal Clostridium spp. (p = 0.077). The total anaerobic bacteria were not affected with supplementation of Ecklonia cava in diets. Polynomial contrasts analysis revealed that villus height of the ileum exhibited a linear increase (p<0.05) in response with the increase in the level of dietary Ecklonia cava. However, villus height of duodenum and jejunum, crypt depth, villus height to crypt depth ratio of different segments of the intestine were not affected. Conclusion: The results suggest that Ecklonia cava had beneficial effects on the growth performance, cecal microflora, and intestinal morphology of weanling pigs.

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.

Characteristics of butyric acid bacterium, Clostridium butyricum DIMO 52, isolated from feces of Korean breastfeeding infants (국내 모유수유 유아의 분변에서 분리한 낙산균 Clostridium butyricum DIMO 52의 특징)

  • Mo, SangJoon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.775-784
    • /
    • 2021
  • After isolating the DIMO 52 strain with a large inhibition zone diameter for Clostridium perfringens and maximum butyric acid production from the fecal sample of a breastfeeding infant, it was identified as Clostidium butyricum. The maximum growth of the DIMO 52 strain was reached 24 h after inoculation, and the maximum butyric acid concentration was approximately 34.73±4.27 mM. The DIMO 52 strain survived approximately 67.5% of the initial inoculum at pH 2.0, and approximately 64.9% survived in RCM broth supplemented with 0.3% (w/v) oxgall. In addition, DIMO 52 showed antibacterial activity against Escherichia coli KCTC 2441 and Salmonella Typhimurium KCTC 1925. In LPS-stimulated RAW264.7 cells, 1×103 CFU/mL viable cells of the DIMO 52 strain also exhibited significant NO (nitric oxide) production inhibitory activity (33%, p<0.01). This result suggests that C. butyricum DIMO 52 has anti-inflammatory activity related to NO radical-scavenging activity. In conclusion, C. butyricum DIMO 52 isolated in this study has the potential to be used as a probiotic.

Hot-melt extruded copper sulfate affects the growth performance, meat quality, and copper bioavailability of broiler chickens

  • Kim, Min Ju;Hosseindoust, Abdolreza;Lee, Jun Hyung;Kim, Kwang Yeoul;Kim, Tae Gyun;Chae, Byung Jo
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.484-493
    • /
    • 2022
  • Objective: This study was conducted to evaluate the effects of the supplementation of diets of broiler chickens with hot-melt extruded CuSO4 (HME-Cu) on their growth performance, nutrient digestibility, gut microbiota, small intestinal morphology, meat quality, and copper (Cu) bioavailability. Methods: A total of 225 broilers (Ross 308), one-day old and initial weight 39.14 g, were weighed and distributed between 15 cages (15 birds per cage) in a completely randomized experimental design with 3 treatments (diets) and 5 replicates per treatment. Cages were allotted to three treatments including control (without supplemental Cu), IN-Cu (16 mg/kg of CuSO4), and HME-Cu (16 mg/kg of HME processed CuSO4). Results: The HME-Cu treatment tended to increase the overall body weight gain (p<0.10). The apparent digestibility of Cu was increased by supplementation of HME-Cu at phase 2 (p<0.05). The Escherichia coli count in cecum tended to decrease with the supplementation with Cu (p<0.10). In addition, the HME-Cu treatment had a higher pH of breast meat than the control and IN-Cu treatments (p<0.05). Significant increases in the cooking loss, water-holding capacity, and lightness in the breast were observed in the HME-Cu treatment compared to the control (p<0.05). The Cu content of excreta increased with the Cu supplementation (p<0.05). The concentration of excreta Cu in broilers was decreased in the HME-Cu compared to the IN-Cu in phase 2 (p<0.05). The Cu concentration in the liver was increased with the HME-Cu supplementation, compared with the control diets (p<0.05). Conclusion: This study showed that HME-Cu supplementation at the requirement level (16 mg/kg diets) in broiler diets did not affect the growth performance and the physiological function of Cu in broilers. However, supplementation of Cu in HME form improved the meat quality and the bioavailability of Cu.