• Title/Summary/Keyword: initial equilibrium state

Search Result 94, Processing Time 0.026 seconds

Determination of elastic parameters of the deformable solid bodies with respect to the Earth model

  • Guliyev, Hatam H.;Javanshir, Rashid J.;Hasanova, Gular H.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1071-1080
    • /
    • 2018
  • The study of behavior and values of deformations in the geological medium makes the scientific basis of the methodology of synthesis of true values of parameters of its physico-mechanical and density properties taking into account the influence of geodynamic impacts. The segments of continuous variation of homogeneous elastic uniform deformations are determined under overall compression of the medium. The limits of these segments are defined according to the criteria of instability (on geometric form changes and on "internal" instability). Analytical formulae are obtained to calculate current and limiting (critical) values of deformations within the framework of various variants of small and large initial deformations of the non-classically linearized approach of non-linear elastodynamics. The distribution of deformation becomes non-uniform in the medium while the limiting values of deformations are achieved. The proposed analytical formulae are applicable only within homogeneous distribution of deformations. Numerical experiments are carried out for various elastic potentials. It is found that various forms of instability can precede phase transitions and destruction. The influence of these deformation phenomena should be removed while the physico-mechanical and density parameters of the deformed media are determined. In particular, it is necessary to use the formulae proposed in this paper for this purpose.

Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete (섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도)

  • 박대효;부준성;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

Dynamic Nonlinear Analysis of Ocean Cables Subjected to Wave Forces (파력을 받는 해양케이블의 동적 비선형 해석)

  • 김문영;김남일;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-188
    • /
    • 1999
  • Kim et al.(I999) presented a non-linear finite element formulation of spatial ocean cables using multiple noded cable elements. The initial equilibrium state of ocean cables subjected to self-weights, support motions, and current forces was determined using the load incremental method and free vibration analysis were performed considering added mass, In this paper, the methods to generate regular and irregular waves and calculate wave forces due to these waves are discussed and challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to wave loadings.

  • PDF

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

A study on sliding surface design

  • Zhang, Yifan.;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.2
    • /
    • pp.25-31
    • /
    • 2014
  • Sliding mode design and analysis for nonlinear system was carried out. A designer will determine the parameters to know about the performance and robustness of the system dynamics. To investigate the characteristics of sliding mode control, an inverted pendulum model is applied by the sliding mode control and the state concerned is output. Comparison is made by evaluating different initial conditions, sliding numerical components for sliding surface, and input gain, the dynamic of output will be investigated to conclude the generality. Control approaches have their limitations and sliding mode control is no exception. The chattering problem is its main negative effect to overcome. This effect is displayed and in this project chattering problem is suppressed by a modified discontinuous controller.

  • PDF

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

Photochemical Reactions of Saccharin-$\alpha$-Silylamine Systems. Desilylmethylation of $\alpha$-Silylamine via Single Electron Transfer Pathway

  • Ung Chan Yoon;Young Sim Koh;Hyun Jin Kim;Dong Yoon Jung;Dong Uk Kim;Sung Ju Cho;Sang Jin Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.743-748
    • /
    • 1994
  • Photochemical reactions of saccharin with tertiary amines were explored. Saccharin was found to undergo an acid-base reaction with N-trimethylsilylmethyl-N,N-diethyl amine to form N-trimethylsilylmethyl-N,N-diethyl ammonium saccharin salt which is in equilibrium with free saccharin and N-trimethylsilylmethyl-N,N-diethyl amine insolution. Photoreaction of N-trimethylsilylmethyl-N,N-diethyl ammonium saccharin in $CH_3OH\;or\;CH_3CN$ results in the generation of desilylmethylated product, N,N-diethyl ammonium saccharin mainly along with benzamide. Photoreaction of N-methylsaccharin with N-trimethylsilylmethyl-N,N-diethyl amine in $CH_3OH$ leads to the production of o-(N-methylcarbamoyl)-N-ethylbenzenesulfonamid e as the major product along with N-methylbenzamide as the minor product. On the other hand, photoreaction of N,N,N-triethyl ammonium saccharin, generated from saccharin and triethylamine, produces N-methylbenzamide as the exclusive product. These photoreactions are quenched by oxygen indicating that triplets of saccharin and N-methylsaccharin are the reactive excited states. Based on the consideration of the redox potentials of saccharin and N-trimethylsilylmethyl-N,N-diethyl amine, and the nature of photoproducts, pathways involving initial triplet state single electron transfer are proposed for photoreactions of the saccharins with the ${\alpha}$-silylamine.

A Study on Estimate for Error and Convergence of Membrane Structures According to the Nonlinear Form-finding Techniques (비선형 형상 탐색 기법에 따른 막구조물의 오차와 수렴성 평가에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Jeong, Eul-Seok;Jeon, Jin-Hyung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.57-66
    • /
    • 2007
  • The membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and happen large deformation phenomenon. Therefore, in this paper, we investigate the convergence of solution and the speed according to the control variables and the method of shape analysis.

  • PDF

Suspension Properties of Silty Mud in Combined Wave-Current Flow (파-흐름의 공존장에서 실트질 점토의 정상특성)

  • 김차겸;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 1992
  • Physical experiments were conducted to investigate the suspension properties of silty mud in combined wave-current flow. Suspension mass when there was opposing current was much higher than that when there was following current. It is due to the fact which strong turbulent flow in the bottom is developed in the opposing current but oscillatory flow effect decreases in the following current. Critical bed shear stress for suspension of silty mud in combined wave-current flow was deduced to be $\tau$$_{c}$~0.045 N/$m^2$. Formulas expressing the relation with initial suspension rate with bed shear stress, and the relation between the former and measured significant wave height were deduced. The relationship of initial suspension rate with bed shear stress was significantly scattered, but the relationship with measured significant wave height was reasonably good. When there is wave only, vertical diffusion coefficients of sediment were calculated from the vertical concentration gradients of suspended sediment when the concentration of suspended sediment approached to nearly equilibrium state. The diffusion coefficient increased exponentially with height from the bottom in the lower half of the flow depth but were nearly constant in the upper half of the flow depth.h.

  • PDF