• Title/Summary/Keyword: initial damage

Search Result 791, Processing Time 0.026 seconds

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Viscoelastic Properties of Fruit Flesh(I) - Stress Relaxation Behavior - (과실(果實)의 점탄성(粘彈性) 특성(特性)(I) - 응력이완거동(應力弛緩擧動) -)

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.260-271
    • /
    • 1992
  • Fruits are generally subjected to mechanical forces during harvesting, handling, and transportation that may cause damage in the form of bruises, punctures, and cracks. In order to prevent damage, and insure better quality fruits for consumers, it is very essential to study physical properties of these materials. The studies were conducted to examine the effect of storage period, storage condition, and other factors, such as loading rate and initial strain, on the stress relaxation behavior of the fruit flesh, and develop nonlinear viscoelastic models to represent its stress relaxation behavior. The following results were obtained from the study : 1. Since the viscoelastic behavior of the fruits flesh was nonlinear, the behavior was satisfactorily modelled as follows ; $${\delta}({\varepsilon},\;t)={\varepsilon}^A[B\;{\exp}(-Ct)+D\;{\exp}(-Ft)+G(-Ht)]$$ But, for the every strain applied, the stress relaxation behavior of the fruit flesh, such as apple and pear, could be well described by the Generalized Maxwell model, respectively. 2. The effect of loading rate on the stress relaxation behavior was remarkable. The higher loading rate resulted in the higher initial stress, and the faster stress relaxation. 3. The higher initial strain resulted in the higher initial stress, and stress relaxed at the large initial strain was also much higher than at the small initial strain. 4. Stress relaxation rate and quantity stored in the fruits at the low temperature storage were much higher than those at the normal temperature storage in the same storage period. Also, in all fruits tested, the longer storage period was the more relaxation rate and quantity were shown. These trends in the normal temperature condition was the more significant than in the low temperature condition.

  • PDF

Optimal Seismic Reliability of Bridges Based on Minimum Expected Life Cycle Costs (최소기대비용에 기초한 교량의 최적내진신뢰성)

  • 조효남;임종권;심성택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-256
    • /
    • 1999
  • This study is intended to propose a systematic procedure for the development of the reliability-based seismic safety and cost-effective Performance criteria for design and upgrading of long span PC bridges. In the paper, a set of cost function models for life cycle cost analysis of bridges is proposed. The total life cycle cost functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses. The damage costs are successfully expressed in terms of Park-Ang median global damage indices and damage probabilities. The proposed approach is successfully applied to model bridges in both regions of a moderate seismicity area like Seoul, Korea and a high one like Tokyo, Japan. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as long span PC bridges.

  • PDF

Analysis on the Type of Damaged Land in DeMilitarized Zone(DMZ) Area and Restoration Direction (비무장지대(DMZ) 인근의 훼손지 유형 분석 및 복원방향)

  • Sung, Hyun-Chan;Kim, Su-Ryeon;Kang, Da-In;Seo, Joung-Young;Lee, Sang-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.185-193
    • /
    • 2016
  • Purpose of this study is to classify damaged lands according to the cause of the damage and their influences based on characteristic of the damaged lands in DeMilitarized Zone(DMZ) area, and utilize this study as a fundamental study for establishment of ecosystem restoration system. Literature review and field survey have been conducted to review the damage status of DMZ area. For field survey, first year and second year have been conducted, in which type of the damage has been reviewed in this study. In the result, types of damage have been classified into 6 categories: 'alteration of initial landform', 'loss of surface layer', 'land pollution', 'alteration of soil chemical property', 'decline of vegetation', and 'invasion of foreign species'. Restoration for each damage type is as following. First, for alteration of initial landform, the land is restored to the original landform prior to the damage and connection to surrounding ecosystem is considered. Second, for loss of surface layer, lost surface layer is restored or further loss is prevented with stabilization. Third, for land pollution, source of the pollution is eradicated or self-circulation with purification of polluted land is encouraged. Fourth, for alteration of soil chemical property, soil is restored of its original property with eradication of the pollution source and improvement of soil. Fifth, for decline of vegetation, current vegetation and anticipated alteration in future are considered and number of wild species is to be increased based on structure and characteristic of nearby vegetation. Sixth, for invasion of foreign species, prevention of dominance by risky species and facilitation ecological stability with ecological management are to be considered. Influence according to the cause of damage has occurred in secondary(indirect) influence or simultaneous occurrence of several damage types. Considering all these aspects, when type of the damage is complex, restoration process for each of former mentioned 6 damage types with solitary influence should be considered in unison.

Adaptive Responses of Escherichia coli for Oxidative and Protein Damage Using Bioluminescence Reporters

  • Min, Ji-Ho;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.466-469
    • /
    • 2004
  • The recombinant bioluminescent Escherichia coli strains, DPD2511 and TV 1061 containing the katG and grpE promoters, respectively, from Vibrio fischeri fused to luxCDABE, were used to detect the adaptive and repair responses to oxidative damage caused by hydrogen peroxide $(H_2O_2)$, and protein damage due to phenol. The response ratio, represented as the bioluminescence induced in subsequent inductions of DPD2511 and TV1061 with the mother cells previously induced by each chemical, i.e., $H_2O_2$ and phenol during the previous induction stage, decreased suddenly compared with the ratio of the control culture of each strain, meaning there is a possible adaptive response to stress caused by chemicals. Protein damage due to phenol was completely repaired by the second culturing after the initial induction, as was oxidative damage caused by $H_2O_2$ which was also rapidly repaired, as detected by the recovery of bioluminescence level. This result suggests that E. coli promptly adapt and repair oxidative and protein damage by $H_2O_2$ and phenol completely.

Novel approach for early damage detection on rotor blades of wind energy converters

  • Zerbst, Stephan;Tsiapoki, Stavroula;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.419-444
    • /
    • 2014
  • Within this paper a new approach for early damage detection in rotor blades of wind energy converters is presented, which is shown to have a more sensitive reaction to damage than eigenfrequency-based methods. The new approach is based on the extension of Gasch's proportionality method, according to which maximum oscillation velocity and maximum stress are proportional by a factor, which describes the dynamic behavior of the structure. A change in the proportionality factor can be used as damage indicator. In addition, a novel deflection sensor was developed, which was specifically designed for use in wind turbine rotor blades. This deflection sensor was used during the experimental tests conducted for the measurement of the blade deflection. The method was applied on numerical models for different damage cases and damage extents. Additionally, the method and the sensing concept were applied on a real 50.8 m blade during a fatigue test in the edgewise direction. During the test, a damage of 1.5 m length was induced on the upper trailing edge bondline. Both the initial damage and the increase of its length were successfully detected by the decrease of the proportionality factor. This decrease coincided significantly with the decrease of the factor calculated from the numerical analyses.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Structural Damage Detection through System Identification (시스템 동정을 통한 구조물의 결함 탐지)

  • Koh, Bong-Hwan;Nagarajaiah, S.;Phan, M.Q.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1223-1228
    • /
    • 2006
  • This paper presents an experimental investigation of a recently developed Kronecker Product (KP) method to determine the type, location, and intensity of structural damage from an identified state-space model of the system. Although this inverse problem appears to be highly nonlinear, the system mass, stiffness, and damping matrices are identified through a series of transformations, and with the aid of the Kronecker product, only linear operations are involved in the process. Since a state-space model can be identified directly from input-output data, an initial finite element model and/or model updating are not required. The test structure is a two-degree-of-freedom torsional system in which mass and stiffness are arbitrarily adjustable to simulate various conditions of structural damage. This simple apparatus demonstrates the capability of the damage detection method by not only identifying the location and the extent of the damage, but also differentiating the nature of the damage. The potential applicability of the KP method for structural damage identification is confirmed by laboratory test.

  • PDF

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.