• Title/Summary/Keyword: inhibitory mechanism

Search Result 1,033, Processing Time 0.024 seconds

Hepatic Fibrosis Inhibitory Effect of Peptides Isolated from Navicula incerta on TGF-β Induced Activation of LX-2 Human Hepatic Stellate Cells

  • Kang, Kyong-Hwa;Qian, Zhong-Ji;Ryu, BoMi;Karadeniz, Fatih;Kim, Daekyung;Kim, Se-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.124-132
    • /
    • 2013
  • In this study, novel peptides (NIPP-1, NIPP-2) derived from Navicula incerta (microalgae) protein hydrolysate were explored for their inhibitory effects on collagen release in hepatic fibrosis with the investigation of its underlying mechanism of action. TGF-${\beta}1$ activated fibrosis in LX-2 cells was examined in the presence or absence of purified peptides NIPP-1 and NIPP-2. Besides the mechanisms of liver cell injury, protective effects of NIPP-1 and NIPP-2 were studied to show the protective mechanism against TGF-${\beta}1$ stimulated fibrogenesis. Our results showed that the core protein of NIPP-1 peptide prevented fibril formation of type I collagen, elevated the MMP level and inhibited TIMP production in a dose-dependent manner. The treatment of NIPP-1 and NIPP-2 on TGF-${\beta}1$ induced LX-2 cells alleviated hepatic fibrosis. Moreover, ${\alpha}$-SMA, TIMPs, collagen and PDGF in the NIPP-1 treated groups were significantly decreased. Therefore, it could be suggested that NIPP-1 has potential to be used in anti-fibrosis treatment.

The Inhibitory Effect and Mechanism of Luteolin 7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Tack-Joong;Kim, Jin-Ho;Jin, Yong-Ri;Yun, Yeo-Pyo
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • The abnormal proliferation of aortic vascular smooth muscle cells (VSMCs) plays a central role in the pathogenesis of atherosclerosis and restenosis after angioplasty and possibly also in the development of hypertension. The present study was designed to examine the inhibitory effects and the mechanism of luteolin 7-glucoside (L7G) on the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs. L7G significantly inhibited the PDGF-BB-induced proliferation and the DNA synthesis of the VSMCs in a concentration-dependent manner. Pre-incubation of the VSMCs with L7G significantly inhibited the PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the phospholipase C $(PLC)-{\gamma}1$ activation. However, L7G had almost no affect on the phosphorylation of $PDGF-{\beta}$ receptor tyrosine kinase, which was induced by PDGF-BB. These results suggest that L7G inhibits the PDGF-BB-induced proliferation of VSMCs via the blocking of $(PLC)-{\gamma}1$, Akt, and ERK1/2 phosphorylation.

The Action Mechanism of Diazepam on the Contractility of Canine Trachealis Muscle (개의 기관근 수축성에 대한 Diazepam의 작용기전)

  • 권오철;최은미;최형철;김용대;하정희;서장수;이광윤
    • Korean Journal of Bronchoesophagology
    • /
    • v.4 no.1
    • /
    • pp.64-72
    • /
    • 1998
  • This study aimed at observing the effect of diazepam on the contractility of trachealis muscle isolated from canine trachea, possible involvement of central or peripheral type benzodiazepine receptor, and the calcium related mechanism of action of diazepam. Trachealis muscle strips of 15 mm long were suspended in an isolated organ bath containing 1 ml of physiologic salt solution maintained at $37^{\circ}C$, and aerated with 95% $O_2$ /5% $CO_2$. Isometric myography was performed. Diazepam reduced the basal tone concentration dependently, and this inhibitory action was not affected by neither flumazenil, a central benzodiazepine receptor antagonist, nor PK11195, a peripheral benzodiazepine receptor antagonist. Pretreatment with diazepam showed the inhibitory effect on the concentration-response curves to agonists such as bethanechol, 5-hydroxytryptamine and histamine. Diazepam also caused concentration-related inhibition of contraction with potassium chloride 30 mM. The effect of diazepam on the basal tone and potassium chloride-induced contraction with calcium channel blockers were compared. Similar results were obtained in canine trachealis with verapamil, nifedipine and diltiazem. These results suggest that diazepam relax an airway muscle not via specific receptors but by a similar action as calcium channel blockers in canine trachealis muscle.

  • PDF

Ameliorative Effect of Pu-erh Tea on DSS-induced Colitis through Regulation of NF-κB Activation in Mice

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.248-254
    • /
    • 2021
  • Ulcerative colitis (UC), chronic inflammatory bowel disease, is characterized by severe inflammation in the colon. Tea is one of the most popular beverages consumed worldwide. Pu-erh tea, a unique Chinese tea produced by microbial activities, possesses a broad range of health-promoting effects, including anti-aging, anti-Alzheimer's disease, antioxidation and anti-obesity. However, the inhibitory effect of Pu-erh tea on intestinal inflammation and the underlying mechanism remain unclear. The present study was designed to evaluate the regulatory effect of Pu-erh tea extract (PTE) on dextran sulfate sodium (DSS)-induced colitis clinical signs by analyzing the weight loss and colon length in mice. The inhibitory effects of PTE on inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) were also determined in DSS-treated colitis tissue. We observed that PTE treatment significantly inhibited the DSS-induced clinical symptoms of weight loss, decrease,in colon length, and colon tissue damage in mice. Moreover, PTE attenuated the DSS-induced levels of IL-6 and TNF-α in colon tissue. We also demonstrated the anti-inflammatory mechanism of PTE by suppressing the activation of NF-κB in DSS-treated colon tissues. Collectively, the findings provide experimental evidence that PTE may be effective in preventing and treatment of intestinal inflammatory disorders, including UC.

Optimization of Tyrosinase Inhibitory Activity in the Fermented Milk by Lactobacillus plantarum M23 (Lactobacillus plantarum M23 균주를 이용한 Tyrosinase 저해 활성 발효유 생산의 최적화)

  • Lim, Sang-Dong;Kim, Kee-Sung
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.678-684
    • /
    • 2012
  • The melanin pigment in human skin is a major defense mechanism against ultraviolet light to the skin, but darken skin color. Tyrosinase is mainly responsible for melanin biosynthesis (melanogenesis) in animals and enzymatic browning (melanosis) in plants. The purpose of this study was to optimize the fermented milk process for the melanin formation inhibition by using Lactobacillus plantarum M23 with tyrosinase inhibitory activity. We used 4-factor-3-level central composite design combining with response surface methodology. Yeast extract concentration (%, $X_1$), addition of grape (%, $X_2$), incubation temperature ($^{\circ}C$, $X_3$) and incubation time (h, $X_4$) was used as an independent factor, on the other hand, pH (pH, $Y_1$), overall palatability (score, $Y_2$) and tyrosinase inhibitory activity (%, $Y_3$) was used as a dependant factor. Based on the optimization for the highest tyrosinase inhibitory activity with pH 4.4, the expected data of pH, palatability and tyrosinase inhibitory activity with 14.8 h incubation at $37.1^{\circ}C$ by the addition of 0.127% of yeast extract, 2.95% of grape was 4.42, 7.06 and 86.65%, but the real data was 4.35, 6.86 and 84.05%, respectively. Based on the previous results, fermented milk using Lactobacillus plantarum M23 with the tyrosinase inhibitory activity could contribute for the whitening and antiaging of human skin.

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

Studies on the Adrenergic Alpha-Receptor in the Guinea Pig Ileum (해명 회장 운동에 대한 아드레나린성 ${\alpha}$-수용체에 관한 연구)

  • Ko, Chang-Mann
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 1983
  • Intestine is innervated by an interconnected plexus of both sympathetic and parasympathetic nerve fibers. Sympathetic influence causes inhibition of intestinal motility mediated by both ${\alpha}-\;and\;{\beta}-adrenergic$ receptors. The mechanism of intestinal relaxation by ${\beta}-receptors$ has been extensively studied, but the function of ${\alpha}-receptors$ in intestinal motility is still unclear. Although it is suggested that catecholamine reduces acetylcholine release and this may play an important role in ${\alpha}-receptor$ mediated intestinal relaxation, there is no definite evidences about the mechanism and site of action of ${\alpha}-receptor$ mediated relaxation. In this experiment, therefore, the effect and site of action of ${\alpha}-receptor$ agonists were investigated in the guinea pig ileum using electrical field stimulation. The results are summarized as follows : 1) Electrical field stimulation elicited tonic contraction in isolated guinea pig ileum ana this contraction was completely inhibited by the pretreatment of tetrodotoxin or atropine. 2) Norepinephrine, epinephrine and dopamine inhibited the contraction induced by electrical field stimulation but methoxamine and phenylephrine had little effects. 3) Inhibitory effects of norepinephrine and dopamine was partially blocked by yohimbine and phentolamine pretreatment. But haloperidol and propranolol pretreatment cause no effects on the electrical field stimulation induced contraction. Inhibitory effect of dopamine was completely blocked by both haloperidol and yohimbine pretreatment. 4) Inhibitory effects of norepinephrine and dopamine were little affected by the pretreatment with hexamethonium. It is suggested that electrical field stimulation causes tonic contraction of guinea pig ileum by releasing acetylcholine from postganglionic fiber, and this release is blocked by presynaptic ${\alpha}-receptor$ activation.

  • PDF

The Effect of Millettia Reticulatas on the Proliferation Inhibition of Human Uterine Leiomyoma Cell and Expression of Apoptosis (계혈등(鷄血藤)이 자궁근종세포(子宮筋腫細胞)의 증식억제(增殖抑制) 및 세포자멸사에 미치는 영향)

  • Lee, Hwa-Kyung;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.3
    • /
    • pp.135-149
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Millettia Reticulatas on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated concentration of Millettia Reticulatas and investigated cell death rate by MTS assay. Furthermore, flow cytometry analyis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Millettia Reticulatas was increased in a concentration proportional. 2) The result of flow cytometry analysis. subG1 phase arrest related3 cell apoptosis was investigated 23.49% in uterine leiomyoma cell treated Millettia Reticulatas and showed the fession of proportional concentration. 3) The gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing concentration but cyclin E was none exchanged. 4) The character of apoptosis, DNA fragmentation was significantly observed the fession of proportional concentration. 5) The expression of pro-caspase3 and PARP were decreased dependent on treatment concentration. Conclusion : This study showed that Millettia Reticulatas have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis. The apoptotic mechanism was observed that the gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing treatment concentration, induced G1 phase arrest and finally cell death was occurred. The decreased expression of pro-caspase 3 and PARP were noted that apoptosis was related with caspase pathway.

  • PDF

Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro (생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향)

  • Kim, Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Inhibitory Effect of the Ethanol Extract of Rosae rugosae Flos on the Hyperpigmentation and its Action Mechanism Induced by α-MSH (매괴화(玫瑰花) 에탄올추출물이 α-MSH로 유도된 과색소 형성 억제와 작용기전 연구)

  • Lee, Jin-Ho;In, Myung-Hee;Kang, Suk-Hoon;Mun, Yeun-Ja;Woo, Won-Hong;Lim, Kyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.1
    • /
    • pp.41-52
    • /
    • 2015
  • Objective : This study investigated the inhibitory mechanism of the hypopigmentating effects on ethanol extract of Rosae rugosae Flos (ERR) that has not yet been examined. Methods : We analyzed the anti-melanogenic effects of ethanol extracts from Rosae rugosae Flos by tyrosinase activity, melanin contents. We also examined protein expression levels of tyrosinase, TRP-1, TRP-2, MITF and ERK by western blot analysis in melanoma cells. Results : In this investigation, ERR effectively reduced ${\alpha}$-MSH-stimulated melanin synthesis by suppressing expression of tyrosinase and tyrosinase-related protein-1 (TRP-1). On the other hand, the expression of tyrosinase-related protein-2 (TRP-2) were not affected by treatment with ERR. ERR inhibited the expression of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis. The upstream signaling pathway including cAMP response element-binding protein (CREB) and MAPKs were also inhibited by ERR. Pretreatment with PD98059, ERK inhibitor, attenuated the inhibitory effect of ERR on ${\alpha}$-MSH-induced tyrosinase activity. Conclusions : Our study suggested that the anti-melanogenic activity of ERR is correlated with the suppression of tyrosinase gene through CREB/MITF/ERK pathway.