• Title/Summary/Keyword: inhibitor-1

Search Result 4,584, Processing Time 0.029 seconds

Starch Phosphorylase and its Inhibitor from Sweet Potato Root

  • Chang, Tsung-Chain;Su, Jong-Ching
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.134-138
    • /
    • 1986
  • Based on a tracer study, starch phosphorylase was implicated as an agent in the starch synthesis in sweet potato roots. The enzyme was purified from the tissue as a cluster of isozymes with an average mw of 205K (fresh roots) or 159K (roots stored for 3 mon.). On SDS polyacrylamide gel electrophoresis, one large subunit of 98K mw and several small ones of 47${\sim}57K mw were observed. From the mw data and the results of peptide mapping and immunoelectrophoretic blotting using mono- and polyclonal antibodies, it was deduced that a large part of the large subunit was cleaved at the middle part of the peptide chain to give rise to the small subunits, and on storage, the enzyme molecules were further modified by proteolysis. During the course of phosphorylase purification, a proteinaceous inhibitor of the enzyme was isolated. It had a mw of 250K and was composed of 5 identical subunits of 51K mw. In the direction of starch synthesis, the inhibitor showed a noncompetitive kinetics with a Ki of $1.3{\times}10^{-6}\;M$. By immunohistochemical methods, both the enzyme and the inhibitor were located on the cell wall and amyloplast. Crossreacting materials of the inhibitor were present in spinach leaf, potato tuber and rice grain. These findings indicate the wide occurrence of the inhibitor and also imply its possible participation in regulating starch phosphorylase activity in vivo.

  • PDF

Fermentation of MR-387A and H, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387 : Carbon and Nitrogen Catabolite Repression of Inhibitor Formation

  • Kho, Yung-Hee;Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Choong-Hwan;Lee, Ho-Jae;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.158-162
    • /
    • 1995
  • The effect of carbon and nitrogen sources on the production of novel aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. High D-glucose and ammonia concentrations (5$\%$ and 1$\%$, respectively) exerted a negative influence on the inhibitor formation. The suppressive effect of glucose on the inhibitor formation is probably caused by an effect of medium pH rather than that of cyclic AMP. To establish the optimum conditions for inhibitor overproduction, various nitrogen sources and ammonium ion-trapping agents were examined. The use of ammonia slow-releasing nitrogen sources such as soybean meal and fish meal, or ammonium ion-trapping agents such as kaoline, celite, and natural zeolite achieved the enhancement of inhibitor production. These results also indicate that inhibitor formation is affected by ammonium ion repression.

  • PDF

Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC

  • Ha, Yu Mi;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 2015
  • Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension.

G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation (Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.871-877
    • /
    • 2009
  • We investigated the effects of sodium butyrate, a histone deacetylase inhibitor, on the cell cycle progression in human monocytic leukemia U937 cells. Exposure of U937 cells to sodium butyrate resulted in growth inhibition, G1 arrest of the cell cycle and induction of apoptosis in a dose-dependent manner as measured by MTT assay and flow cytometry analysis. The increase in G1 arrest was associated with the down-regulation in cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 and 6 expression, and up-regulation of Cdk inhibitors such as p21 and p27. Sodium butyrate treatment also inhibited the phosphorylation of retinoblastoma protein (pRB) and p130, however, the levels of transcription factors E2F-1 and E2F-4 were not markedly modulated. Furthermore, the down-regulation of phosphorylation of pRB and p130 by this compound was associated with enhanced binding of pRB and E2F-1, as well as p130 and E2F-4, respectively. Overall, the present results demonstrate a combined mechanism involving the inhibition of pRBjp130 phosphorylation and induction of Cdk inhibitors as targets for sodium butyrate that may explain some of its anti-cancer effects in U937 cells.

Optimal Culture Conditions for Production of Subtilisin-like Protease Inhibitor from Streptomyces thermocarboxydus C12 (Streptomyces thermocarboxydus C12에서 Subtilisin-like Protease Inhibitor 생산을 위한 최적배양조건)

  • Kang, Sung-Il;Jang, Young-Boo;Choi, Gyeong-Lim;Choi, Byeong-Dae;Kong, Jai-Yul;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The objective of this paper was to investigate optimal culture conditions for the production of an inhibitor against subtilisin-like protease from Streptomyces thermocarboxydus (S. thermocarboxydus) C12 isolated from sediments of Gwangyang coast. The optimal temperature and initial pH for the production of subtilisin-like protease inhibitor were $40^{\circ}C$ and pH 8.0, respectively. Inhibition activities were high for galactose, glucose and fructose. The best carbon source and its concentration were galactose and 1.6% (w/v), respectively. Inhibition activities were also high in medium containing polypeptone, proteose and peptone. Optimal nitrogen source and concentration were protease peptone and 0.5% (w/v), respectively. Optimal concentrations for inhibitor production were 1% (w/v) for NaCl and 1 mM LiCl for metal salts. The subtilisin-like protease inhibitor from S. thermocarboxydus C12 showed a maximum inhibitor activity after cultivation for 84 h under the optimized medium.

Production and Purification of Pepsin Inhibitor from Actinomycetes GF 155-2 (Actinomycetes GF 155-2에 의한 pepsin 저해물질의 생산 및 정제)

  • 박석규;성낙계;이상원
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.121-125
    • /
    • 1989
  • Actinomycetes GF 155-2, which produced an extracellular pepsin inhibitor, was isolated from soil samples. Optimal conditions of inhibitor production by flask-shacking culture were 2% glucose, 0.7% polypeptone, initial pH 1.0, culture time 60 hours and temperature 30%. Effect of in-organic salts was not observed. About 5mg of colorless crystalline inhibitor was obtained from 5L culture broth in jar tormentor by means of ammonium sulfate precipitation, methanol extraction, and column chromatographies on Amberlite IR-120, XAD-2 and silicagel 60.

  • PDF

Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe (탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가)

  • Woo, Dalsik;Hwang, Byunggi
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.

Inhibition Mechanism of $\alpha$-D-Glucosidase Inhibitor from Streptomyces sp (Streptomyces속 균주가 생성하는 $\alpha$-D-Glucosidase 저해물질의 작용상)

  • 도재호;주현규
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 1990
  • The inhibitor had the inhibitory activities against hydrolysis of PNPG, sucrose and ONPG by $\alpha$-Dglucosidase, $\alpha$ - and $\beta$ -galactosidase, but it did not inhibit amylases and other carbohydrases. Kinetic studies exhibited that the inhibitory substance non-competitively inhibited the enzyme reaction with a Ki value of 118 $\mu$g/m$\ell$, and enzyme-inhibitor complex was formed slowly.

  • PDF

THE ROLE OF MAPK AND PKC-${\delta}$ IN PHOSPHATIDIC ACID-MEDIATED INTERCELLULAR ADHESION MOLECULE-1 EXPRESSION (Phosphatidic acid에 의한 intercellular adhesion molecule-1 발현 조절에 관여한 MAPK와 PKC-${\delta}$의 역할)

  • Cho, Woo-Sung;Yoon, Hong-Sik;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.445-454
    • /
    • 2007
  • Background: Phosphatidic acid(PA), an important second messenger, is involved in inflammation. Notably, cell-cell interactions via adhesion molecules playa central role in inflammation. This thesis show that PA induces expression of intercellular adhesion molecule-1(ICAM-1) on macrophages and describe the signaling pathways. Materials and methods: Macrophages were cultured in the presence of 10% FBS and assayed cell to cell adhesion using HUVEC. For the gene and protein analysis, RT-PCR, Western blot and flow cytometry were performed. In addition, overexpressed cell lines for dominant negative PKC-${\delta}$ mutant established and tested their effect on the promoter activity and expression of ICAM-1 protein by PA. Results: PA-activated macrophages significantly increased adhering to human umbilical vein endothelial cell and this adhesion was mediated by ICAM-1. Pretreatment with rottlerin(PKC-${\delta}$ inhibitor) or expression of a dominant negative PKC-${\delta}$ mutant, but not Go6976(classical PKC-${\alpha}$ inhibitor) and myristoylated PKC-${\xi}$ inhibitor, attenuated PA-induced ICAM-1 expression. The p38 mitogen-activated protein kinase(MAPK) inhibitor blocked PA-induced ICAM-1 expression in contrast, ERK upstream inhibitor didn't block ICAM-1. Conclusion: These data suggest that PA-induced ICAM-1 expression and cell-cell adhesion in macrophages requires PKC-${\delta}$ activation and that PKC-${\delta}$ activation is triggers to sequential activation of p38 MAPK.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.