• Title/Summary/Keyword: inhibition of adhesion

Search Result 190, Processing Time 0.024 seconds

Effect of Asarum sieboldii Extracts on the Growth, Acid Production, Adhesion, and Insoluble Glucan Synthesis of Streptococcus mutans (세신 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성억제에 미치는 영향)

  • Yu Hyeon Hee;Seo Se Jeong;Kim Yeon Hwa;Lee Heung Soo;Kim Kang Ju;Jeon Byung Hun;You Yong Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.666-671
    • /
    • 2003
  • Dental caries are the most commonly occurring chronic diseases in the dental field. Because of increasing sugar consumption and extension of average human life, these diseases are widely found all over the world as the most typical cause for a person to lose a tooth. Therefore, the development of more effective, substantial and safe preventive agents against dental caries is strongly required. Streptococcus mutans is known as the causative bacterial playing the most important role informing plaque and it is being noticed as major causative bacteria of dental caries. The present study was designed to investigate the effect of Asarum sieboldii Miquel(Aristolochiaceae) extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans(S. mutans). Both methanol and aqueous extracts showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 100, 1,000 and 2,000 μg/ml compared to the control group(p<0.05 - p<0.01). The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 50% at the concentration of 10 μg/ml and complete inhibition was observed at the concentration of 2,000 μg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan from sucrose, methanol and aqueous extracts showed more than 70% inhibition over the concentration of 1,000 μg/ml. Hence, we conclude that Asarum sieboldii might be a candidate of anticaries agent.

Antioxidant Activities of Dianthus chinensis L. Extract and Its Inhibitory Activities against Nitric Oxide Production and Cancer Cell Growth and Adhesion (패랭이꽃 추출물의 항산화, Nitric Oxide 생성저해, 암세포 성장 및 부착 억제 활성)

  • Lee, Jungjae;Seo, Younggeo;Lee, Junho;Ju, Jihyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The aim of the study was to investigate the antioxidant content and activities of ethanol extract of the edible flower Dianthus chinensis L. (DCE) as well as its inhibitory activities against nitric oxide (NO) production in macrophages and growth and adhesion of human cancer cells. The total polyphenol, flavonoid, and carotenoid levels of DCE were 19.0 mg gallic acid equivalent/g, 65.7 mg quercetin equivalent/g, and $95.0{\mu}g/g$, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power of DCE at a concentration of $1,000{\mu}g/mL$ were 44% and 51%, respectively. In lipopolysaccharide-treated RAW 264.7 macrophages, treatment with DCE at concentrations of 500 and $1,000{\mu}g/mL$ resulted in significantly reduced NO levels (to 7~23% of the control). In H1299 human lung carcinoma cells and HCT116 human colorectal carcinoma cells, treatment with DCE at concentrations of 250, 500, and $1,000{\mu}g/mL$ resulted in dose-dependent growth inhibition. DCE was also effective in inhibiting adhesion of both H1299 cells (to 55% of the control at concentration of $1,000{\mu}g/mL$) and HCT116 (to 26~40% of the control at concentrations of 250, 500, and $1,000{\mu}g/mL$). These results suggest that DCE exerts antioxidant, anti-inflammatory, and anti-cancer activities in vitro.

Monoclonal Antibody against leucocyte CD11b(MAb 1B6) increase the early mortality rate in Spraque Dawley with E. coli pneumonia (백혈구 CD11b에 대한 단 클론 항체 (MAb 1B6)는 Spraque Dawley의 E. coli 폐렴의 조기 사망률을 증가시킨다)

  • Kim, Hyung Jung;Kim, Sung Kyu;Lee, Won Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.579-589
    • /
    • 1996
  • Background : Activation of neutrophil is critical for the clearance of microorganisms and toxic host mediators during sepsis. Unfortunately the activated neutrophil and its toxic byproducts can produce tissue injury and organ dysfunction. The leucocyte CD11/18 adhesion complex regulates neutrophil-endothelial cell adhesion, the first step in neutrophil migration to sites of injection and inflammation. To investigate the potential of neutrophil inhibition as a treatment strategy for sepsis, we evaluated the effects of monoclonal antibody against CD11b (MAb 1B6) in rats intrabronchial challenged with Escherichia coli. Methods : Animals were randomly assigned to receive monoclonal antibody against CD11b (1 mg/kg, sc) and bovine serum albumin(BSA, 1 mg/kg, sc) 6 hr before, at 0 and 6 hr after intrabronchial challenge of $20x10^9$ CFU/kg E. coli 0111. Animals were randomized to treat either 24, 60 or 90% oxygen after bacterial challenge and begining 4 hr after inoculation, all animals were received 100 mg/kg ceftriaxone qd for 3 days. Peripheral and alveolar neutrophil(by bronchoalveolar lavage) counts and lung injury parameters such as alveolar-arte rial $PO_2$ difference, wet to dry lung weight ratio and protein concentration of alveolar fluid were measured in survived rats at 12 hr and 96 hr. Results : Monoclonal antibody against CD11b decreased circulating and alveolar neutrophil especially more in 12 hr than in 96 hr The lung injury parameters of antibody-treated animals were not different from those of BSA-treated animals. but It was meaningless due to small number of survived animals. The early(6 hr) mortality rate was significantly increased in antibody-treated group(51%) compared to BSA-treated group(31%) (P=0.02) but late(from 12 hr to 72 hr) mortality rate was not different in antibody-treated group(44%) from BSA-treated group(36%) (P =0.089). Conclusion : Leucocyte CD11b/18 adhesion molecule is known to regulate neutrophil migration to the site of infection and inflammation. The monoclonal antibody against CD11b decreased alveolar neutrophil in rats with pulmonary sepsis and increased early mortality rate. Therefore, we can speculate that monoclonal antibody against CD11b blocks of alveolar recruitment of neutrophils, impairs host defense mechanism and increases early mortality rate of pulmonary sepsis in rat.

  • PDF

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

N-acetylcysteine and the human serum components that inhibit bacterial invasion of gingival epithelial cells prevent experimental periodontitis in mice

  • Alam, Jehan;Baek, Keum Jin;Choi, Yun Sik;Kim, Yong Cheol;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.6
    • /
    • pp.266-273
    • /
    • 2014
  • Purpose: We previously reported that human serum significantly reduces the invasion of various oral bacterial species into gingival epithelial cells in vitro. The aims of the present study were to characterize the serum component(s) responsible for the inhibition of bacterial invasion of epithelial cells and to examine their effect on periodontitis induced in mice. Methods: Immortalized human gingival epithelial (HOK-16B) cells were infected with various 5- (and 6-) carboxy-fluorescein diacetate succinimidyl ester-labeled oral bacteria, including Fusobacterium nucleatum, Provetella intermedia, Porphyromonas gingivalis, and Treponiema denticola, in the absence or presence of three major serum components (human serum albumin [HSA], pooled human IgG [phIgG] and ${\alpha}1$-antitrypsin). Bacterial adhesion and invasion were determined by flow cytometry. The levels of intracellular reactive oxygen species (ROS) and activation of small GTPases were examined. Experimental periodontitis was induced by oral inoculation of P. gingivalis and T. denticola in Balb/c mice. Results: HSA and phIgG, but not ${\alpha}1$-antitrypsin, efficiently inhibited the invasion of various oral bacterial species into HOK-16B cells. HSA but not phIgG decreased the adhesion of F. nucleatum onto host cells and the levels of intracellular ROS in HOK-16B cells. N-acetyl-cysteine (NAC), a ROS scavenger, decreased both the levels of intracellular ROS and invasion of F. nucleatum into HOK-16B cells, confirming the role of ROS in bacterial invasion. Infection with F. nucleatum activated Rac1, a regulator of actin cytoskeleton dynamics. Not only HSA and NAC but also phIgG decreased the F. nucleatum-induced activation of Rac1. Furthermore, both HSA plus phIgG and NAC significantly reduced the alveolar bone loss in the experimental periodontitis induced by P. gingivalis and T. denticola in mice. Conclusions: NAC and the serum components HSA and phIgG, which inhibit bacterial invasion of oral epithelial cells in vitro, can successfully prevent experimental periodontitis.

Antimicrobial Activities and Adherence Inhibition on Streptococcus mutans by Ethyl Acetate Extract from Caesalpinia sappan L. (소목(Caesalpinia sappan L.)의 에틸아세테이트 분획물이 Streptococcus mutans에 대한 항균활성 및 부착 억제)

  • Kwon, Hyun-Jung;Kim, Yong-Hyun;Han, Kook-Il;Jeon, Mi-Ae;Han, Man-Deuk
    • Journal of dental hygiene science
    • /
    • v.12 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Somok, the heart wood of Caesalpinia sappan is used in traditional Chinese medicine. Adherence of S. mutans to the tooth surface can result in the formation of a dental plaque. This study was performed to investigate the antibacterial activity and bacterial adhesion of ethyl acetate extract from C. sappan against S. mutans ATCC 25175. The bacteria were cultured in brain heart infusion(BHI) broth, and then incubated under 5% $CO_2$ at $37^{\circ}C$ for 18~24 hours. The antimicrobial activity of the ethyl acetate extract of C. sappan was then examined using the paper disc methods and MIC. In addition, bacterial adherence to hydroxyapatite was also examined. The ethyl acetate extract was shown to produce inhibitory effects and had MIC values of 125 mg/ml against S. mutans ATCC 25175. The ethyl acetate extract inhibited adhesion of S. mutans to saliva coated-hydroxyapatite beads(S-HA). At 24 hr, the ethyl acetate extract significantly reduced the adherence of S. mutans to S-HA beads relative to the control. The isolated active substance was identified as brazilin($C_{16}H_{14}O_5$) by $^1H-NMR$ and $^{13}C-NMR$. Thus, the application of C. sappan can be considered a useful and practical method for the prevention of dental caries.

Inhibitory Effect of Combination with Korean Red Gnseng and Morus Alba in High Fructose-induced Vascular Inflammation and Steatohepatitis (고과당식이 투여 랫드모델에서 홍삼과 상엽 복합투여에 대한 혈관염증 및 지방간염 억제 효과)

  • Lee, Yun Jung;Yoon, Jung Joo;Lee, So Min;Kho, Min Chul;Kim, Hye Yoom;Ahn, You Mee;Kho, Joung Hyun;Lee, Kee Byoung;Lee, Ho Sub;Choi, Kyung Min;Kwon, Tae Oh;Kang, Dae Gill
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.724-731
    • /
    • 2012
  • This study was designed to elucidate whether combination with Korean red ginseng and Morus alba L. (MPM), traditional treatment for diabetes, ameliorates on high fructose-induced steatohepatitis and vascular inflammation. Animals were divided into four groups; Control receiving tap water, fructose-fed, rosiglitazone-treated fructose-fed rats, and MPM-treated fructose-fed rats both receiving supplemented with 60% fructose (n=10). The MPM or rosiglitazone groups initially received a high-fructose diet alone for 8 weeks, with supplementation with MPM or rosiglitazone, peroxisome proliferators-activated receptor gamma ($PPAR{\gamma}$) agonist, occurring during the final 6 weeks. Treatment with MPM significantly prevented the increase in c-reactive protein (CRP) levels in the high fructose group. MPM suppressed high fructose diet-induced vascular inflammation marker expression such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. MPM also reduced intima/media thickness of thoracic aorta. Histologic observation and oil red O staining demonstrated hepatic tissue damage and lipid accumulation were severe in high fructose group. Treatment with MPM ameliorated hepatic tissue morphology with minimized steatosis. In addition, MPM attenuated hepatitis by inhibition of monocyte chemoattractant protein-1 (MCP-1) expression. MPM-fed group showed lower serum GOT and GPT levels comparing with high fructose group. MPM and rosiglitazone (positive control) significantly decreased the size of epididymal adipocytes. Taken together, the administration of MPM inhibited high fructose-induced steatohepatitis and vascular inflammation. These results suggested that MPM is useful in the prevention or treatment of metabolic syndrome-related disorders such as fatty acid metabolism and vascular homeostasis.

Curing Properties of UV-LED Curable Color Coating (UV-LED 경화형 칼라 코팅의 경화특성 연구)

  • Ho, Shin-Chan;Kim, Jong-Gu;Hong, Jin-Who;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • In this study, we investigated the curing properties of UV-LED curable color coating. Specially, the effects of UV-LED wavelength (365, 395, and 405 nm), inert gas, the concentration of photosensitizer, and dual curing on the curing behavior of UV-LED coating systems were studied. The photopolymerization behaviors and the unreacted acrylate groups at Film-air (FA) interface and Film-substrate (FS) interface were investigated by photo differential scanning calorimetry (Photo-DSC) and Fourier-transform infrared spectroscopy with attenuated total reflection (FT-IR/ATR), respectively. Photo-DSC results showed that the heat flow and the ultimate conversion for coating system cured by 405 nm UV-LED were higher than the corresponding values for coating systems cured by 395 and 365 nm UV-LED. FT-IR/ATR results showed that the UV-LED curing systems improved interior and through curing of the coating film, but significantly are affected by oxygen inhibition at FA-interface. The inert environment such as nitrogen purging and the dual curing improved the surface and interior curing of the coating films.

The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods (한국 전통발효식품에서 분리한 유산균의 프로바이오틱스 특성 및 건강기능성 연구)

  • Ohn, Jeong-Eun;Seol, Min-Kyeong;Bae, Eun-Yeong;Cho, Young-Je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.581-591
    • /
    • 2020
  • This study investigated the probiotic properties and physiological activities of Korean fermented foods such as sikhae, young radish kimchi, and bean-curd dregs. Among the isolated lactic acid bacteria, Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, and Leuconostoc mesenteroides YMT6 demonstrated a greater than 60% survival rate at pH 2.5, along with an excellent survival rate even at 0.3% bile acid. These five bacteria showed strong flocculation ability in autoaggregation and coaggregation tests, indirectly clustering useful micro-organisms and inhibiting the attachment of pathogenic bacteria. In a cell surface hydrophobicity test, these bacteria showed adhesion to three solvents (ethyl acetate, chloroform, and xylene) and high hydrophobicity, thereby indicating excellent indirect cell adhesion to intestinal cells. The cell-free supernatants and intracellular extracts of the five lactic acid bacteria showed antioxidative activity in the form of 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability and lipid peroxidation inhibition. Antimicrobial activities were also observed in four pathogenic bacteria, namely E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, and S. aureus KCTC 1916. These results demonstrate that these five lactic acid bacteria could be used as probiotics with antioxidant and antimicrobial properties.

Effects of Aconitum Koreanum Extract on the Growth, Acid Production, Adhesion and Insoluble Glucan Synthesis of Streptococcus Mutans (백부자 에탄올 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성억제에 미치는 영향)

  • Kang, Sun Young;An, So Youn;Lee, Min Woo;Kwon, Sim Kyo;Lee, Dong Hyuk;Jeon, Byung Hun;Kim, Kang Ju;You, Yong Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • Streptococcus mutans triggers dental caries establishment by two major factors. One is synthesis of organic acids which demineralize dental enamel and the other is synthesis of glucans which mediate the attachment of bacteria to the tooth surface. In the present study, we evaluated the effect of the ethanol extracts of Aconitum koreanum (A. koreanum ) on the growth and acid production of S. mutans. Ethanol extracts of the A. koreanum showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.016 mg/ml compared to the control groups (p<0.05). The extracts inhibited S. mutans adherence to hydroxyapatite treated with saliva, and cell adherence was repressed by 50%, 54% at the concentration of 0.063, 0.125 mg/ml. On the study of activation of glucosyltransferase which synthesizes water insoluble glucan form sucrose, the ethanol extract of A. koreanum showed remarkable inhibition over the concentration of 0.016, 0.031, 0.063 and 0.125 mg/ml (p<0.05). Especially on the concentration of 0.063, 0.125 mg/ml, the extracts suppressed the glucan synthesis by 100%. We analyzed the component of the extracts of A. koreanum. The results showed that the extract of A. koreanum had strong phenolic compound, glycosides and organic acids. These results suggest that A. koreanum may inhibit the caries-inducing properties of S. mutans, and which may be related with strong phenolic compound, glycosides and organic acids.