• Title/Summary/Keyword: inhibition of DNA damage

Search Result 175, Processing Time 0.031 seconds

Hsp90 Inhibitor Geldanamycin Enhances the Antitumor Efficacy of Enediyne Lidamycin in Association with Reduced DNA Damage Repair

  • Han, Fei-Fei;Li, Liang;Shang, Bo-Yang;Shao, Rong-Guang;Zhen, Yong-Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7043-7048
    • /
    • 2014
  • Inhibition of heat shock protein 90 (Hsp90) leads to inappropriate processing of proteins involved in DNA damage repair pathways after DNA damage and may enhance tumor cell radio- and chemotherapy sensitivity. To investigate the potentiation of antitumor efficacy of lidamycin (LDM), an enediyne agent by the Hsp90 inhibitorgeldanamycin (GDM), and possible mechanisms, we have determined effects on ovarian cancer SKOV-3, hepatoma Bel-7402 and HepG2 cells by MTT assay, apoptosis assay, and cell cycle analysis. DNA damage was investigated with H2AX C-terminal phosphorylation (${\gamma}H2AX$) assays. We found that GDM synergistically sensitized SKOV-3 and Bel-7402 cells to the enediyne LDM, and this was accompanied by increased apoptosis. GDM pretreatment resulted in a greater LDM-induced DNA damage and reduced DNA repair as compared with LDM alone. However, in HepG2 cells GDM did not show significant sensitizing effects both in MTT assay and in DNA damage repair. Abrogation of LDM-induced $G_2/M$ arrest by GDM was found in SKOV-3 but not in HepG2 cells. Furthermore, the expression of ATM, related to DNA damage repair responses, was also decreased by GDM in SKOV-3 and Bel-7402 cells but not in HepG2 cells. These results demonstrate that Hsp90 inhibitors may potentiate the antitumor efficacy of LDM, possibly by reducing the repair of LDM-induced DNA damage.

Inhibitory Effects of Ginger and Garlic Extracts on the DNA Damage (마늘 및 생강추출물의 DNA 손상억제작용)

  • Kang, Jin-Hoon;Ahn, Bang-Weon;Lee, Dong-Ho;Byun, Han-Seok;Kim, Seon-Bong;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 1988
  • The inhibition mechanism of DNA damage by lipid peroxidation was studied through the reaction systems of plasmid pBR322 DNA, linoleic acid and the ethanol extracts obtained from ginger and garlic. The DNA damage was greatly inhibited by the addition of ginger and garlic extracts, and their scavenging effects of active oxygens were also great. It is considered that the inhibitory effects of these extracts on the DNA damage are mainly due to their scavenging effects of active oxygen radicals.

  • PDF

Antioxidative and Probiotic Properties of Lactobacillus gasseri NLRI-312 Isolated from Korean Infant Feces

  • Kim, H.S.;Jeong, S.G.;Ham, J.S.;Chae, H.S.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1335-1341
    • /
    • 2006
  • We selected a Lactobacillus spp. from Korean healthy infant feces based upon their antioxidant activity. This strain was identified as Lactobacillus gasseri by 16S rDNA sequencing, and named Lactobacillus gasseri NLRI-312. In the present study, we investigate the protective effect of this strain on the $H_2O_2$ induced damage to cellular membrane lipid and DNA in Jurkat cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA (malondialdehyde) was measured, and DNA damage was tested by the comet assay. We also examined probiotic properties including tolerance to acid and bile, antibiotic resistance. From the results obtained, the supplementation of Jurkat cells with NLRI-312 decreased in DNA damage, while no effect was shown on MDA decrease. In probiotic properties, this strain was resistance to both acid and bile, showed considerably higher survival when incubated in pH 2 or 1% bile salts (w/v). We concluded that the NLRI-312 could be used as potential probiotic bacteria, with the effect of reducing DNA damage induced by $H_2O_2$.

Effects of Abeliophyllum distichum Nakai Flower Extracts on Antioxidative Activities and Inhibition of DNA Damage

  • Ahn, Joungjwa;Park, Jae Ho
    • Korean Journal of Plant Resources
    • /
    • v.26 no.3
    • /
    • pp.355-361
    • /
    • 2013
  • The present study attempts to evaluate antioxidant activities of extracts from Abeliophyllum distichum. Nakai flower. The samples were collected in Jangyyeon-myeon, Goesan-gun, Korea and extracted with either hot-water or ethyl acetate (EtOAC). In DPPH, hydroxyl radical scavenging activity and $Fe^{2+}$ chelating activity of EtOAC extracts were 93.41%, 98.43%, and 7.38%, while those of hot-water extracts were 86.93%, 41.33% and 47.68% at 200 ${\mu}g/ml$, respectively. In ${\varphi}X$-174 RF I plasmid DNA cleavage assay, the protective effects of EtOAC and hot-water extracts against oxidative DNA damage were 82% and 17% at 200 ${\mu}g/ml$, respectively. Both extracts showed the protective effect of DNA migration by oxidative stress in intracellular DNA migration assay. Both extracts had no cytotoxity in NIH3T3 cells. Several polyphenolic compounds were identified such as 2-methoxy-benzoic acid, vanillic acid, phytol and pulegone by GC/MS. These results indicated that extracts of Abeliophyllum distichum Nakai flower showed antioxidant activities and protective activities against oxidative DNA damage and showed the possibility to be used as an effective natural antioxidants.

The Expression of DNA Polymerase-$\beta$ and DNA Damage in Jurkat Cells Exposed to Hydrogen Peroxide under Hyperbaric Pressure

  • Sul, Dong-Geun;Oh, Sang-Nam;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Long term exposure of Jurkat cells to 2 ATA pressure resulted in the inhibition of cell growth. Under a 2 ATA pressure, the morphological changes in the cells were visualized by electron microscopy. The cells exhibited significant inhibitory responses after three passages. However, short-term exposure study was carried out, 2 ATA pressure may have beneficial effects. The Jurkat cells were exposed to $H_2O_2$ (25 and $50{\mu}M$) in order to induce DNA damage, and then incubated under at either normal pressure or 2 ATA for 1 or 2 hours in order to recover the DNA damage. The extent of DNA damage was determined via Comet assay. More recovery from DNA damage was observed at 2 ATA than at normal pressure. The activity of the DNA repair enzymes, DNA polymerase-$\beta$, was also evaluated at both normal pressure and 2 ATA. The activity of DNA polymerase-$\beta$ was observed to have increased significantly at the 2 ATA than at normal pressure. In conclusion, the effects of hyperbaric pressure from 1 ATA to 2 ATA on biochemical systems can be either beneficial or harmful. Long term exposure to hyperbaric pressure clearly inhibited cell proliferation and caused genotoxic effects, but short-term exposure to hyperbaric pressure proved to be beneficial in terms of bolstering the DNA repair system. The results of the present study have clinical therapeutic application, and might prove to be an useful tool in the study of genotoxicity in the future.

Sirt1 Promotes DNA Damage Repair and Cellular Survival

  • Song, Seung-Hyun;Lee, Mi-Ok;Lee, Ji-Seon;Oh, Je-Sok;Cho, Sung-Uk;Cha, Hyuk-Jin
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2011
  • Sirt1, a nicotinamide adenine dinucleotide ($NAD^+$)-dependent histone deacetylase, is known to deacetylate a number of proteins that are involved in various cellular pathways such as the stress response, apoptosis and cell growth. Modulation of the stress response by Sirtuin 1 (Sirt1) is achieved by the deacetylation of key proteins in a cellular pathway, and leads to a delay in the onset of cancer or aging. In particular, Sirt1 is known to play an important role in maintaining genomic stability, which may be strongly associated with a protective effect during tumorigenesis and during the onset of aging. In these studies, Sirt1 was generated in stably expressing cells and during the stimulation of DNA damage to examine whether it promotes survival. Sirt1 expressing cells facilitated the repair of DNA damage induced by either ionizing radiation (IR) or bleomycin (BLM) treatment. Fastened damaged DNA repair in Sirt1 expressing cells corresponded to prompt activation of Chk2 and ${\gamma}$-H2AX foci formation and promoted survival. Inhibition of Sirt1 enzymatic activity by a chemical inhibitor, nicotinamide (NIC), delayed DNA damage repair, indicating that promoted DNA damage repair by Sirt1 functions to induce survival when DNA damage occurs.

Protective effects of Camellia sinensis fruit and fruit peels against oxidative DNA damage

  • Ahn, Joung-Jwa;Jang, Tae-Won;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.237-244
    • /
    • 2021
  • Camellia sinensis, Green tea, contains phenolic compounds that act to scavenge reactive oxygen species (ROS), such as catechin, epicatechin, etc. In contrast with the tea leaf, the bioactivity of its fruit and the fruit peels remains still unclear. This study focused on the effects of fruit and fruit peels of C. sinensis (FC and PC) against oxidative DNA damage in NIH/3T3 cells. The scavenging effects of FC and PC on ROS were assessed using 1,1-diphenyl-2-picryl hydrazyl or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radicals. The measurement of ROS in cellular levels was conducted by DCFDA reagent and the protein expression of γ-H2AX, H2AX, cleaved caspase-3, p53, and, p-p53 was analyzed by immunoblotting. The gene expressions of p53 and H2AX were assessed using polymerase chain reaction techniques. The major metabolites of FC and PC were quantitatively measured analyzed and the amounts of phenolic compounds and flavonoids in PC were greater than those in FC. Further, PC suppressed ROS production, which protects the oxidative stress-induced DNA damage through reducing H2AX, p53, and caspase-3 phosphorylation. These results refer that the protective effects of FC and PC are mediated by inhibition of p53 signaling pathways, probably via the bioactivity of phenolic compounds. Thus, FC and PC can serve as a potential antioxidant in DNA damage-associated diseases.

Antioxidative Effect of Proteolytic Hydrolysates from Ecklonia cava on Radical Scavenging Using ESR and $H_2O_2$-induced DNA Damage

  • Heo, Soo-Jin;Park, Pyo-Jam;Park, Eun-Ju;Cho, So-Mi K.;Kim, Se-Kwon;Jeon, You-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.614-620
    • /
    • 2005
  • The antioxidative effect of Ecklonia cava, a brown marine alga, was investigated on radical scavenging, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl and alkyl radicals, using an electron spin resonance (ESR) technique, and on the inhibition of $H_2O_2$-induced DNA damage using comet assay. E. cava was enzymatically hydrolyzed with five food industrial proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to prepare water-soluble extracts. All the proteolytic hydrolysates exhibited strong dose-dependent radical scavenging activities (above 80%) at a concentration of $2.5\;{\mu}g/mL$. Kojizyme extract (obtained by proteolytic hydrolysation of E. cava with Kojizyme) showed the highest hydroxyl radical scavenging activity of around 98%. In addition, the $H_2O_2$-induced DNA damage was determined using a comet assay, which was quantified by measuring the tail length. Reduction of DNA damage increased with increasing concentrations of Kojizyme extract from E. cava. These results indicated that E. cava has a potential as a valuable natural antioxidative source.

Effect of DPBll Gene for the Transcriptional Induction by DNA Damage During Cell Cycle in Saccharomyces cerevisiae (출아효모의 세포주기동안 DNA 상해에 의한 발현 유도에 미치는 DPB11 유전자의 영향)

  • 선우양일;임선희;배호정;김중현;김은아;김승일;김수현;박정은;김재우
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.96-102
    • /
    • 2002
  • The S-phase checkpoint mechanisms response to DNA damage or inhibition of DNA replication for maintenance of genetic stability in eukaryotic cells. These roles include cell cycle control arrest at S-phase and Iranscriptional induction of repair genes. To characterize the defects of dpbll mutant for both these responses, we examined the over-expression effect of DPBll gene, the sensitivity to HU, MMS, and the transcriptional pattern by DNA damage agent for RNRS mRNA. RNRS transcript is induced in response to a wide variety of agents that either damage D7A directly through chemical modification or induce stress by blocking DNA synthesis. As results, dpbll-1 cells are sensitive to DNA damage agents and the level of RNR3 mRNA is reduced approximately 40% than wild type cells. Moreover, we found the same results in dpb2-1 cells. Therefore, we propose that DPB2 and DPBll act as a sensor of replication that coordinates the transcriptional and cell cycle responses to replication blocks.

The Protective Effects of Ganoderma lucidum on the DNA Damage and Mutagenesis (DNA손상 및 돌연변이에 대한 명지버섯의 방어효능)

  • 이길수;공석경;최수영
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • Ganoderma lucidum is commonly known as medically potent mushroom, which has been widely used in China and other oriental countries for the treatment of various diseases, including cancer. In this report, we investigated the anti-oxidant and protective effect of Ganodema lucidum extract (GLE) against the DNA damage induced by free radical and U.V. In the assay of cell growth inhibition, the inhibitory cell growth rate induced by hydroxyl radical was dose-dependently decreased by GLE. This results support that GLE has a detoxifying activity against cytotoxicity of hydroxyl radical in E. coli cell. GLE also protected ColE1 plasmid DNA damage in the concentration of 200$\mu\textrm{g}$ per reaction on the DNA fragmentation assay. The nuclear tailing by hydrogen peroxide in single cell gel electrophoresis(SCGE) was decreased by GLE in the concentration of 50$\mu\textrm{g}$/ml. These data indicate that Ganoderma lucidum has an anti-oxidative activity to hydrogen peroxide. The mutation rate after irradiation of U.V. was reduced by 50$\mu\textrm{g}$/ml GLE and total number of Rif (Rifampicin) resistant mutants was decreased in a concentration dependent manner when added the GLE exogenously in a culture media. According to the results, it is likely that GLE has not only an anti-oxidative activity to hydroxyl radical but also an anti-mutagenic activity to U.V. mutagenesis.