• Title/Summary/Keyword: inhibition kinetics

Search Result 155, Processing Time 0.022 seconds

Effect of Genistein, a Tyrosine Kinase Inhibitor, on the Cloned Rat Brain Potassium Channel Kv1.5

  • Choi, Bok-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.243-249
    • /
    • 2006
  • The effect of genistein, widely used as a specific tyrosine kinase inhibitor, on rat brain Kv1.5 channels which were stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. Genistein inhibited Kv1.5 currents at +50 mV in a concentration-dependent manner, with an $IC_{50}$ of $54.7{\pm}8.2\;{\mu}M$ and a Hill coefficient of $1.1{\pm}0.2$. Pretreatment of Kv1.5 with protein tyrosine kinase inhibitors ($10\;{\mu}M$ lavendustin A and $100\;{\mu}M$ AG1296) and a tyrosine phosphatase inhibitor ($500\;{\mu}M$ sodium orthovanadate) did not block the inhibitory effect of genistein. The inhibition of Kv1.5 by genistein showed voltage-independence over the full activation voltage range positive to 0 mV. The activation (at +50 mV) kinetics was significantly delayed by genistein: time constant for an activation of $1.4{\pm}0.2$ msec under control conditions and $10.0{\pm}1.5$ msec in the presence of $60\;{\mu}M$ genistein. Genistein also slowed the deactivation of the tail currents, resulting in a crossover phenomenon: a time constant of $11.4{\pm}1.3$ msec and $40.0{\pm}4.2$ msec under control conditions and in the presence of $60\;{\mu}M$ genistein, respectively. Inhibition was reversed by the application of repetitive depolarizing pulses, especially during the early part of the activating pulse. These results suggest that genistein directly inhibits Kv1.5 channels, independent of phosphotyrosine-signaling pathway.

Degradation and Stabilization of Methionine Enkephalin and $[D-Ala^2]-methionine$ Enkephalinamide in the Corneal Extracts of Rabbits (토끼의 각막 추출액 중 메치오닌엔케팔린 및 [D-알라$^2$-메치오닌엔케팔린아미드의 분해 및 안정화)

  • Lee, Chi-Ho;Lee, Kyoung-Jin;Chun, In-Koo;Sung, Young-Gi;Shin, Young-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • In order to study systemic peptide delivery through the ocular route, the stabilities of methionine enkephalin (Met-Enk) and $[D-ala^2]-methionine$ enkephalinamide (YAGFM) in the corneal extracts of rabbits were investigated using reversed phase HPLC. Met-Enk was found to be hydrolyzed most rapidly in the corneal epithelium, but YAGFM was relatively stable. Aminopeptidases appeared to contribute over 60% to the degradation of Met-Enk and the degradation rate of Met-Enk followed the first order kinetics. The half-lives of Met-Enk in the extracts of the corneal epithelium and endothelium were 36 and 673 min, respectively. From the effects of enzyme inhibitors, it was found that the application of the mixture of amastatin, thimerosal and EDTA was very useful for the inhibition of peptide degradation.

  • PDF

MERCURY-INDUCED ALTERATIONS OF CHLOROPHYLL a FLUORESCENCE KINETICS IN ISOLATED BARLEY (Hordeum vulgare L. cv. ALBORI) CHLOROPLASTS

  • Chun, Hyun-Sik;Lee, Choon-Hwan;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • Effects of HgCl$_2$-treatment on electron transport, chlorophyll a fluorescence and its quenching were studied using isolated barley (Hordeum vulgare L. cv. Albori) chloroplasts. Depending on the concentration of HgCI$_2$, photosynthetic oxygen-evolving activities of photosystem II (PS II) were greatly inhibited, whereas those of photosystem I (PS I) were slightly decreased. The inhibitory effects of HgCl$_2$ on the oxygen-evolving activity was partially restored by the addition of hydroxyamine, suggesting the primary inhibition site by HgCl$_2$2-treatment is close to the oxidizing site of PS tl associated with water-splitting complex. Addition of 50 $\mu$M HgCI$_2$ decreased both photochemical and nonphotochemical quenching of chlorophyll fluorescence. Especially, energy dependent quenching (qE) was completely disappeared by HgCl$_2$-treatment as observed by NH$_4$CI treatment. In the presence of HgCI$_2$, F'o level during illumination was also increased. These results suggest that pH gradient across thylakoid membrane can not be formed in the presence of 0 $\mu$M HgCl$_2$. In addition, antenna pigment composition might be altered by HgCl$_2$-treatment.

  • PDF

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

Evaluation of the inhibition of the differentiation of pre-adipocytes into matures adipocytes

  • Morvan, Pierre Yves
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.440-447
    • /
    • 2003
  • Up until today, the key to contouring has been resumed in these two alternatives, either limiting the adipocyte storing capacity by modulating lipogenesis, or by stimulating lipolysis to eliminate adipocyte lipid content. Another interesting way could be the regulation of adipocyte differentiation. In this work, we have evaluated the effect of a brown algal extract of Sphacelaria scoparia (SSE) on the differentiation of pre-adipocytes into adipocytes. A pre-adipocyte line (3T3-L 1) was used. The differentiation was evaluated by the measure of produced lipids thanks to red oil coloration and spectrophotometry, and also by the expression of adipocyte differentiation markers: enzymes such as fatty acid synthase (FAS) and stearoyl CoA desaturase (SCD), or membrane proteins such as glucose transporters (GLUT -4) and fatty acid transporters (FAT) expressed on the surface of human adipocytes. These genes are under control of two transcription factors: CAAT-enhancer binding protein (c/EBP alpha) and sterol response element binding protein (SREBP1). All these markers were analysed at different stages of differentiation by RT -PCR. Sphacelaria extract (SSE) inhibits pre-adipocytes differentiating into adipocytes following a dose-dependant relation, using a kinetics similar to retinoic acid. It decreases the expression of mRNA specific to FAS, FAT, GLUT -4, SCD1, c/EBP alpha and SREBP1. Moreover, SSE regulated on collagen 1 and collagen 4 expression. A stimulation of collagen 1 was also measured in human skin fibroblasts. Thus, SSE performs as a genuine differentiation inhibitor and not only as a lipogenesis inhibitor, and could be used in slimming products.

  • PDF

Inactivation of human pleural fluid phospholipase $A_2$ by dioscin

  • Beak, Suk-Hwan;Kim, Sung-Hwan;Son, Kun-Ho;Chung, Kyu-Charn;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.218-222
    • /
    • 1994
  • The natural product, spirostanol glycoside dioscin, was shown to directly inactivate human pleural fluid phospholipase $A_2{\;}(PLA_2)$ Inactivation was dose, and time dependent. The $IC_{50}$ was estimated at 18 .mu.M and virtually complete inactivation of the enzyme occurred at 50 .mu.M. Using Michaelis-Menten kinetics, dioscin inactivated the enzyme by a competitive inhibitory manner, the apparent Ki value was $6.9{\times}10_{-4}$. Reversibility was studied directly by dialysis method, the inhibition was reversible. Additioin of excess $Ca^{2+}$ concentration up to 8 mM did not antagonize the inhibitory activity of dioscin. Inactivation of several kinds of $PLA_2$ by dioscin is due to interaction with the active site of $PLA_2$ and may be a useful adjunt in the theraphy of inflammatory diseases.

  • PDF

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1397-1402
    • /
    • 2010
  • Papyriflavonol A (PapA), a prenylated flavonoid [5,7,3',4'-tetrahydroxy-6,5'-di-(${\gamma},{\gamma}$-dimethylallyl)-flavonol], was isolated from the root barks of Broussonetia papyrifera. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as an antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 ${\mu}g/ml$ for C. albicans and Saccharomyces cerevisiae, Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), and Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell-membrane-disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 ${\mu}g/ml$ of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having potential as a broad spectrum antimicrobial agent.