• Title/Summary/Keyword: inhibiting factor

Search Result 559, Processing Time 0.024 seconds

Effect of Water Extract of Aconiti Lateralis Preparata Radix on Lung Injury in LPS-induced Septic C57BL6 Mice (부자 추출물이 LPS로 유도된 C57BL6 마우스의 패혈증 연관 급성 폐 손상에 미치는 영향)

  • In-Seung Lee;Mina Boo;Jae Ouk Sim;Seung-Ho Baek;Jinbong Park
    • Journal of Convergence Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Objectives: TSepsis and subsequent acute lung injury (ALI) is a critical state of health caused by infection or endotoxins. This study was conducted to evaluate the effect of Water Extract of Aconiti Lateralis Preparata Radix (AR) on lipopolysaccharide (LPS)-induced sepsis in C57BL/6 mice. Methods: Male C57BL/6 mice were intraperitoneally injected with LPS to induce sepsis and ALI. AR was orally fed twice at 30 min and 180 min after LPS injection. At 24 h post injection, mice were sacrificed, bronchoalveolar lavage fluid (BALF) and blood was collected, and lung tissue was harvested. Hematoxylin and eosin staining was performed in lung tissues, wet/dry ratio of the lung tissue was measured, and the serum cytokine and chemokine levels were analyzed. Results: AR revoked the LPS-induced pathological changes in lung tissues, such as abnormal histological structures, immune cell infiltration and lung edema. Also, AR suppressed the neutrophil infiltration into the lung which was greatly increased by LPS injection based on the cell content of collected BALF. Serum cytokines and chemokines were measured, and AR reversed the LPS-induced increase of cytokines such as interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and chemokines including C-X-C motif chemokine ligand 1 and 2. Conclusion: TAR showed a protective effect in the pathological progress of LPS-induced ALI. Especially, AR suppressed lung edema and infiltration of neutrophils by inhibiting cytokine and chemokine expressions. Such results demonstrate the potential of AR as a therapeutic agent for sepsis and sepsis-induced ALI.

Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice

  • Kyung-Jun, Boo;Edson Luck, Gonzales;Chilly Gay, Remonde;Jae Young, Seong;Se Jin, Jeon;Yeong-Min, Park;Byung-Joo, Ham;Chan Young, Shin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

Protective effects against alcoholic liver damage: potential of herbal juice (HJ), blend of Zingiber officinale Roscoe and Pueraria lobata Ohwi extracts

  • Young Yun Jung;You Yeon Choi;Woong Mo Yang;Kwang Seok Ahn
    • Journal of Convergence Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Objectives : Alcohol-induced liver disease advances as to reactive oxygen species (ROS) and cellular lipid peroxidation increase. We examined the hepatoprotective effects of Zingiber officinale Roscoe rhizome extract (ZR), Pueraria lobata Ohwi flower extracts (PF), and a newly developed herbal juice (HJ), which was a combination of ZR and PF extracts, against ethanol-induced hepatotoxicity. Methods: The study utilized the human hepatoma cell line HepG2 cells to validate the hepatoprotective effect of HJ (50~200 ㎍/mL) against ethanol (EtOH, 700 mM)-induced liver damage. Results: HJ effectively reduced the protein expression of sterol regulatory element-binding transcription factor 1, adiponectin, and AMP-activated protein kinase in EtOH-induced HepG2 cells. The levels of ROS, total cholesterol, and triglycerides, which are the result of various synthesis and lipogenesis processes induced by EtOH in the liver, were reduced by HJ. Furthermore, the activities of alcohol dehydrogenase and aldehyde dehydrogenase, enzymes linked to alcohol degradation, were more effectively downregulated by HJ treatment compared to treatment with ZR and PF alone, all without causing cytotoxic effects. Conclusions: HJ protects the liver by inhibiting EtOH-induced lipogenesis, lowering ROS generation, and improving alcohol degradation, which is more effective than ZR and PF alone. Further, in vivo experiments can offer additional evidence regarding the effectiveness, safety, and underlying mechanism of action of HJ.

  • PDF

Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway

  • Radhika Adhikari;Saugat Shiwakoti;Eunmin Kim;Ik Jun Choi;Sin-Hee Park;Ju-Young Ko;Kiyuk Chang;Min-Ho Oak
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.515-525
    • /
    • 2023
  • The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Expression of Toll-like receptors 3, 7, 9 and cytokines in feline infectious peritonitis virus-infected CRFK cells and feline peripheral monocytes

  • Khair, Megat Hamzah Megat Mazhar;Selvarajah, Gayathri Thevi;Omar, Abdul Rahman;Mustaffa-Kamal, Farina
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.27.1-27.16
    • /
    • 2022
  • Background: The role of Toll-like receptors (TLRs) in a feline infectious peritonitis virus (FIPV) infection is not completely understood. Objectives: This study examined the expression of TLR3, TLR7, TLR9, tumor necrosis factor-alpha (TNF-α), interferon (IFN)-β, and interleukin (IL)-10 upon an FIPV infection in Crandell-Reese feline kidney (CRFK) cells and feline monocytes. Methods: CRFK cells and monocytes from feline coronavirus (FCoV)-seronegative cats and FCoV-seropositive cats were infected with type II FIPV-79-1146. At four, 12, and 24 hours post-infection (hpi), the expression of TLR3, TLR7, TLR9, TNF-α, IFN-β, and IL-10, and the viral load were measured using reverse transcription quantitative polymerase chain reaction. Viral protein production was confirmed using immunofluorescence. Results: FIPV-infected CRFK showed the upregulation of TLR9, TNF-α, and IFN-β expression between 4 and 24 hpi. Uninfected monocytes from FCoV-seropositive cats showed lower TLR3 and TLR9 expression but higher TLR7 expression compared to uninfected monocytes from FCoV-seronegative cats. FIPV-infected monocytes from FCoV-seropositive cats downregulated TLR7 and TNF-α expression between 4 and 24 hpi, and 4 and 12 hpi, respectively. IFN-β was upregulated early in FIPV-infected monocytes from FCoV-seropositive cats, with a significant difference observed at 12 hpi compared to FCoV-seronegative cats. The viral load in the CRFK and FIPV-infected monocytes in both cohorts of cats was similar over time.ConclusionTLR7 may be the key TLR involved in evading the innate response against inhibiting TNF-α production. Distinct TLR expression profiles between FCoV-seronegative and FCoV-seropositive cats were observed. The associated TLR that plays a role in the induction of IFN-β needs to be explored further.

Silkworm pupal extracts attenuate interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators in the SW1353 human chondrosarcoma cell line

  • Kamidi Rahul;HaeYong Kweon;Ji Hae Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.2
    • /
    • pp.60-66
    • /
    • 2023
  • Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases and is more common in older and obese individuals. Silkworm male pupae exerts tonic effects by increasing testosterone secretion and the forced swimming time and muscle ratio increased in mice consuming silkworm pupae, which may be beneficial to the older population. Therefore, it will be beneficial to investigate the effects of silkworm pupal extracts (SPE) on OA. To confirm this effect, we prepared SPE in different solvents, and their ability to attenuate matrix metalloproteinases (MMPs) and inflammatory mediators (interleukin-6 [IL-6], interleukin-8 [IL-8] and tumor necrosis factor-α [TNF-α]) were evaluated in an interleukin-1β (IL-1β)-induced SW1353 human chondrosarcoma cell line. 70% ethanolic SPE outperformed the other solvents, reducing MMP-1 and MMP-3 expression by up to 53% and 13%, respectively. Further experiments were performed using 70% ethanolic SPE from three distinct pupation stages in males and females. SPE treatment alleviated MMP-1 expression (43.9-47.4%) regardless of pupation stage and sex. Among the inflammatory mediators, 70% ethanolic SPE alleviated IL-6 and TNF-α levels, and the concentrations thereof were lowest in the early-stage male SPE-treated group (43.15% and 56.74%, respectively). In conclusion, 70% ethanolic SPE may prevent IL-1β-induced osteoarthritis by inhibiting MMPs and inflammatory cytokines. Therefore, SPE is a potential therapeutic agent for the treatment of OA.

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho;Myoung Chong Song;Yonghee Lee;Seung-Taek Noh;Dae-Ok Kim;Chan-Su Rha
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.593-603
    • /
    • 2023
  • Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

Cirsium japonicum var. Maackii Extract Suppress VCAM-1 and ICAM-1 Expression in TNF-α-treated Human Vascular Endothelial Cells by Blocking NF-κB Activation (인간 혈관 내피세포에서 NF-κB 억제를 통한 엉겅퀴 추출물의 VCAM-1 및 ICAM-1 발현 억제효과)

  • Jae Young Shin;Byoung Ok Cho;Ji Hyeon Park;Eun Seo Kang;Jae Suk Sim;Dong Jun Sim;Seon Il Jang
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Cirsium japonicum var. maackii is a traditional Korean wild perennial herb used to treat blood circulation, high blood pressure, inflammation, diabetes, and kidney damage. However, it is not known whether C. japonicum var. maackii directly improves endothelial dysfunction. In this study, the effect of C. japonicum var. maackii (CJE) on tumor necrosis factor (TNF)-α-induced vascular inflammation was investigated in vitro using human umbilical vein endothelial cells (HUVEC). As a result, CJE inhibited the production of VCAM-1, ICAM-1 and ROS increased by TNF-α in HUVECs. In addition, treatment with CJE attenuated IκB phosphorylation and translocation of NF-κB to the nucleus. These results suggest that CJE can suppress TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation. The results of this study show that CJE has the potential to be used to treat and prevent inflammation associated with endothelial cell damage.