DOI QR코드

DOI QR Code

Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents

  • Jeong Hun Cho (Research and Innovation Center, AMOREPACIFIC) ;
  • Myoung Chong Song (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Yonghee Lee (Research and Innovation Center, AMOREPACIFIC) ;
  • Seung-Taek Noh (Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Dae-Ok Kim (Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Chan-Su Rha (Research and Innovation Center, AMOREPACIFIC)
  • Received : 2022.05.03
  • Accepted : 2023.02.12
  • Published : 2023.07.01

Abstract

Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1β and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

Keywords

Acknowledgement

We are grateful to those who provided sincere supports; ginseng raw material was kindly obtained from Dong-Joo Oh, Osulloc Farm Co., Seogwipo, Republic of Korea, and purified compounds were identified by Doo-Hee Lee using HRMS, National Instrumentation Center for Environmental Management, Seoul, Republic of Korea.

References

  1. Patel DK, Kumar R, Prasad SK, Hemalatha S. Pharmacologically screened aphrodisiac plant-A review of current scientific literature. Asian Pac J Trop Biomed 2011;1(1):S131-8. https://doi.org/10.1016/S2221-1691(11)60140-8
  2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  3. Lee MS, Yang EJ, Kim JI, Ernst E. Ginseng for cognitive function in Alzheimer's disease: a systematic review. J Alzheimers Dis 2009;18(2):339-44. https://doi.org/10.3233/JAD-2009-1149
  4. Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis 2008;18(1):46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  5. Lee CS, Bae IH, Han J, Choi GY, Hwang KH, Kim DH, et al. Compound K inhibits MMP-1 expression through suppression of c-Src-dependent ERK activation in TNF-α-stimulated dermal fibroblast. Exp Dermatol 2014;23(11):819-24. https://doi.org/10.1111/exd.12536
  6. Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, et al. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018;42(2):218-24. https://doi.org/10.1016/j.jgr.2017.03.007
  7. Kim SN, Kim S, Hong YD, Park H, Shin SH, Kim AR, et al. The ginsenosides of Panax ginseng promote hair growth via similar mechanism of minoxidil. J Dermatol Sci 2015;77(2):132-4. https://doi.org/10.1016/j.jdermsci.2014.12.007
  8. Williams M. Dietary supplements and sports performance: herbals. J Int Soc Sports Nutr 2006;3(1):1-6. https://doi.org/10.1186/1550-2783-3-1-1
  9. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42(4):549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  10. Hyun SH, Kim SW, Seo HW, Youn SH, Kyung JS, Lee YY, et al. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J Ginseng Res 2020;44(4):527-37. https://doi.org/10.1016/j.jgr.2020.01.005
  11. Im D-S, Nah S-Y. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacol Sin 2013;34(11):1367-73. https://doi.org/10.1038/aps.2013.100
  12. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, et al. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  13. Du QQ, Liu SY, Xu RF, Li M, Song FR, Liu ZQ. Studies on structures and activities of initial Maillard reaction products by electrospray ionisation mass spectrometry combined with liquid chromatography in processing of red ginseng. Food Chem 2012;135(2):832-8. https://doi.org/10.1016/j.foodchem.2012.04.126
  14. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginsengIn G, Ahn N-G, Bae B-S, Lee M-W, Park H-W, Jang KH, et al., editors. J Ginseng Res 2017;41(3):361-9. https://doi.org/10.1016/j.jgr.2016.07.004
  15. Jeong DW, Cho CH, Lee JS, Lee SH, Kim T, Kim DO. Deastringent peel extracts of persimmon (Diospyros kaki Thunb. cv. Chengdu-Bansi) protect neuronal PC-12 and SH-SY5Y cells against oxidative stress. J Microbiol Biotechnol 2018;28(7): 1094-104. https://doi.org/10.4014/jmb.1801.01013
  16. Singh S, Singh R, Banerjee S, Negi AS, Shanker K. Determination of antitubercular agent in mango ginger (Curcuma amada Roxb.) by reverse phase HPLC-PDA-MS. Food Chem 2012;131(1):375-9. https://doi.org/10.1016/j.foodchem.2011.08.054
  17. Fabre H, Le Bris A, Blanchin MD. Evaluation of different techniques for peak purity assessment on a diode-array detector in liquid chromatography. J Chromatogr A 1995;697(1-2):81-8. https://doi.org/10.1016/0021-9673(94)00979-J
  18. Rha C-S, Jung YS, Lee JD, Jang D, Kim MS, Lee MS, et al. Chemometric analysis of extracts and fractions from green, oxidized, and microbial fermented teas and their correlation to potential antioxidant and anticancer effects. Antioxidants 2020;9(10):1015.
  19. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292
  20. Rha C-S, Jeong HW, Park S, Lee S, Jung YS, Kim D-O. Antioxidative, antiinflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants 2019;8(8):278.
  21. Lee JW, Mo EJ, Choi JE, Jo YH, Jang H, Jeong JY, et al. Effect of Korean red ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology. J Ginseng Res 2016;40(3):229-36. https://doi.org/10.1016/j.jgr.2015.08.001
  22. Zhang X, Yu L, Bi H, Li X, Ni W, Han H, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr Polym 2009;77(3):544-52. https://doi.org/10.1016/j.carbpol.2009.01.034
  23. Shin J-H, Park YJ, Kim W, Kim D-O, Kim B-Y, Lee H, et al. Change of ginsenoside profiles in processed ginseng by drying, steaming, and puffing. J Microbiol Biotechnol 2019;29(2):222-9.
  24. Yoon SR, Lee GD, Park JH, Lee IS, Kwon JH. Ginsenoside composition and antiproliferative activities of explosively puffed ginseng (Panax ginseng C.A. Meyer). J Food Sci 2010;75(4):C378-82. https://doi.org/10.1111/j.1750-3841.2010.01592.x
  25. He M, Huang X, Liu S, Guo C, Xie Y, Meijer AH, et al. The difference between white and red ginseng: variations in ginsenosides and immunomodulation. Planta Med 2018;84(12/13):845-54. https://doi.org/10.1055/a-0641-6240
  26. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28(3):467-95. https://doi.org/10.1039/c0np00057d
  27. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, et al. Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res 2012;36(3):263-9. https://doi.org/10.5142/jgr.2012.36.3.263
  28. Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, et al. In vitro and in vivo antiinflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016;40(4):437-44. https://doi.org/10.1016/j.jgr.2016.08.003
  29. Liu ZQ, Luo XY, Liu GZ, Chen YP, Wang ZC, Sun YX. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J Agric Food Chem 2003;51(9):2555-8. https://doi.org/10.1021/jf026228i
  30. Kim S, Kang BY, Cho SY, Sung DS, Chang HK, Yeom MH, et al. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. Biochem Biophys Res Commun 2004;316(2):348-55. https://doi.org/10.1016/j.bbrc.2004.02.046
  31. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  32. Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, et al. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2017;41(1):43-51. https://doi.org/10.1016/j.jgr.2015.12.009
  33. Matsuura H, Hirao Y, Yoshida S, Kunihiro K, Fuwa T, Kasai R, et al. Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem Pharm Bull 1984;32(11):4674-7. https://doi.org/10.1248/cpb.32.4674
  34. Han BH, Park MH, Han YN. Isolation of isomaltol-α-D-glucopyranoside1 and ketopropyl-α-D-glucopyranoside2 from Korean red ginseng. Arch Pharm Res 1985;8(4):257-60. https://doi.org/10.1007/BF02856500
  35. Lee SK, Kim JH, Sohn HJ, Yang JW. Changes in aroma characteristics during the preparation of red ginseng estimated by electronic nose, sensory evaluation and gas chromatography/mass spectrometry. Sensors Actuators B Chem 2005;106(1):7-12. https://doi.org/10.1016/j.snb.2004.05.030
  36. Wang Z, Hao W, Hu J, Mi X, Han Y, Ren S, et al. Maltol improves APAP-induced hepatotoxicity by inhibiting oxidative stress and inflammation response via NF-kB and PI3K/Akt signal pathways. Antioxidants 2019;8(9):395.
  37. Zhu DC, Wang YH, Lin JH, Miao ZM, Xu JJ, Wu YS. Maltol inhibits the progression of osteoarthritis via the nuclear factor-erythroid 2-related factor-2/ heme oxygenase-1 signal pathway in vitro and in vivo. Food Funct 2021;12(3):1327-37. https://doi.org/10.1039/D0FO02325F
  38. Han Y, Xu Q, Hu JN, Han XY, Li W, Zhao LC. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 2015;7(1):682-96.
  39. Li RY, Zhang WZ, Yan XT, Hou JG, Wang Z, Ding CB, et al. Arginyl-fructosylglucose, a major mallard reaction product of red ginseng, attenuates cisplatininduced acute kidney injury by regulating nuclear factor κ-B and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem 2019;67(20):5754-63. https://doi.org/10.1021/acs.jafc.9b00540
  40. Lee D, Ghafoor K, Moon S, Kim SH, Kim S, Chun H, et al. Phenolic compounds and antioxidant properties of high hydrostatic pressure and conventionally treated ginseng (Panax ginseng) products. Qual Assur Saf Crop Food 2015;7(4): 493-500. https://doi.org/10.3920/QAS2014.0416
  41. Chung I-M, Kim J-W, Seguin P, Jun Y-M, Kim S-H. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): effects of cultivation location, year, and storage period. Food Chem 2012;130(1):73-83. https://doi.org/10.1016/j.foodchem.2011.06.056
  42. Chung IM, Lim JJ, Ahn MS, Jeong HN, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2016;40(1):68-75. https://doi.org/10.1016/j.jgr.2015.05.006
  43. Malathy R, Prabakaran M, Kalaiselvi K, Chung I-M, Kim S-H. Comparative polyphenol composition, antioxidant and anticorrosion properties in various parts of Panax ginseng extracted in different solvents. App Sci 2020;11(1):93.
  44. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 2009;57(5):1768-74. https://doi.org/10.1021/jf803011r
  45. Kim D-O, Lee CY. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 2004;44(4):253-73. https://doi.org/10.1080/10408690490464960
  46. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 2002;173(2):224-34. https://doi.org/10.1006/exnr.2001.7841
  47. Xu T, Shen X, Yu H, Sun L, Lin W, Zhang C. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. J Ginseng Res 2016;40(3):211-9. https://doi.org/10.1016/j.jgr.2015.07.007
  48. Lee J-W, Park C-K, Do J-H. Antioxidative activity of the water soluble browning reaction products from Korean Red Ginseng. J Ginseng Res 2005;29(1):44-8. https://doi.org/10.5142/JGR.2005.29.1.044
  49. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41(4):435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  50. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, et al. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41(4):513-23. https://doi.org/10.1016/j.jgr.2016.10.001
  51. Lee SJ, In G, Han ST, Lee MH, Lee JW, Shin KS. Structural characteristics of a red ginseng acidic polysaccharide rhamnogalacturonan I with immunostimulating activity from red ginseng. J Ginseng Res 2020;44(4):570-9. https://doi.org/10.1016/j.jgr.2019.05.002
  52. Adams CJ, Grainger MN, Manley-Harris M. Isolation of maltol glucoside from the floral nectar of New Zealand manuka (Leptospermum scoparium). Food Chem 2015;174:306-9. https://doi.org/10.1016/j.foodchem.2014.11.073
  53. Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, et al. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 2019;43(3):431-41. https://doi.org/10.1016/j.jgr.2018.07.003
  54. Piao X, Zhang H, Kang JP, Yang DU, Li Y, Pang S, et al. Advances in saponin diversity of Panax ginseng. Molecules 2020;25(15):3452.