• Title/Summary/Keyword: inhibiting activity

Search Result 1,310, Processing Time 0.03 seconds

Inhibitory Effects of Ssanghwa-tang on Lung Injury and Muscle Loss in a Cigarette Smoke Extract and Lipopolysaccharide-induced Chronic Obstructive Pulmonary Disease Mouse Model (표준담배추출물과 Lipopolysaccharide로 유발한 만성폐쇄성폐질환 동물모델에서 쌍화탕의 폐손상 및 근감소 억제 효과)

  • Jin-kwan Choi;Won-kyung Yang;Su-won Lee;Seong-cheon Woo;Seung-hyung Kim;Yang-chun Park
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.11-30
    • /
    • 2024
  • Objectives: This study evaluated the effects of Ssanghwa-tang (SHT) on lung injury and muscle loss in a COPD mouse model. Methods: C57BL/6 mice were challenged with cigarette smoke extract and lipopolysaccharide, and then treated with two concentrations of SHT (250 and 500 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed by cytospin, ELISA, real-time PCR, flow cytometry analysis, and H&E and Masson's trichrome staining. The grip strength of COPD mice was measured using a grip strength meter. The running time of COPD mice was measured by a treadmill test. Muscle tissue of the quadriceps was stained with H&E and Masson's trichrome staining. Results: SHT significantly inhibited the increase in neutrophil numbers in BALF and significantly decreased immune cell activity in BALF and lung tissue. It also significantly inhibited the increase in TNF-α, IL-17, and MIP2 in BALF. Real-time PCR analysis revealed that the mRNA expression of TNF-α, IL-17, MIP2, and TRPV1 in lung tissue showed a significant decrease compared with the control group. Lung tissue damage was significantly reduced in the histological analysis. The grip strength and running time of the COPD mice showed a significant decrease compared with the control group. In histological staining, SHT was found to reduce the damage to muscle tissue. Conclusions: This study indicates that SHT can be used as a therapeutic agent for COPD patients by inhibiting lung injury and muscle loss.

Effect of Adefovir Dipivoxil on the Inhibition of Osteogenic Differentiation of Mesenchymal Stem Cells and Osteoblasts (아데포비어가 중간엽 줄기세포와 조골세포의 골형성 분화 억제에 미치는 영향)

  • Ho PARK
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.284-290
    • /
    • 2023
  • Adefovir dipivoxil (ADV) is used for the treatment of hepatitis and acquired immunodeficiency syndrome, but long-term use can cause osteoporosis. In this study, the effect of ADV on the osteocyte maturation process was evaluated at the level of undifferentiated cells using mesenchymal stem cells (MSCs) and osteoblasts (MG63). First, MSCs and MG63 cells were treated with ADV at different concentrations, and then a Cell Counting Kit-8 analysis was performed to determine the effect on the proliferation of each cell. Additionally, crystal violet and Hoechst staining were performed for the morphological analysis of each cell and nucleus. To determine the cause of cell hypertrophy, the transforming growth factor-beta (TGF-β) expression was investigated, and alkaline phosphatase (ALP) staining and activity were measured to determine the degree of differentiation of the MSCs and MG63 cells into mature osteocytes. The results confirmed that the ADV increases the expression of TGF-β in MSCs and MG63 cells, causing cellular and nuclear hypertrophy, and can cause osteoporosis by inhibiting cell proliferation and affecting the differentiation of mature osteocytes. Therefore, it is believed that these results can be used as a basis for understanding the adverse effects of ADV at a cytological level in basic medicine and clinical research.

Effectiveness of cephalosporins in hydrolysis and inhibition of Staphylococcus aureus and Escherichia coli biofilms

  • Jawaria Aslam;Hafiz Muhammad Ali;Shujaat Hussain;Muhammad Zishan Ahmad;Abu Baker Siddique;Muhammad Shahid;Mirza Imran Shahzad;Hina Fatima;Sarah Tariq;Fatima Sadiq;Maria Aslam;Umar Farooq;Saadiya Zia;Rawa Saad Aljaluod;Khaloud Mohammed Alarjani
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.47.1-47.12
    • /
    • 2024
  • Importance: Staphylococcus aureus and Escherichia coli contribute to global health challenges by forming biofilms, a key virulence element implicated in the pathogenesis of several infections. Objective: The study examined the efficacy of various generations of cephalosporins against biofilms developed by pathogenic S. aureus and E. coli. Methods: The development of biofilms by both bacteria was assessed using petri-plate and microplate methods. Biofilm hydrolysis and inhibition were tested using first to fourth generations of cephalosporins, and the effects were analyzed by crystal violet staining and phase contrast microscopy. Results: Both bacterial strains exhibited well-developed biofilms in petri-plate and microplate assays. Cefradine (first generation) showed 76.78% hydrolysis of S. aureus biofilm, while significant hydrolysis (59.86%) of E. coli biofilm was observed by cefipime (fourth generation). Similarly, cefuroxime, cefadroxil, cefepime, and cefradine caused 78.8%, 71.63%, 70.63%, and 70.51% inhibition of the S. aureus biofilms, respectively. In the case of E. coli, maximum biofilm inhibition (66.47%) was again shown by cefepime. All generations of cephalosporins were more effective against S. aureus than E. coli, which was confirmed by phase contrast microscopy. Conclusions and Relevance: Cephalosporins exhibit dual capabilities of hydrolyzing and inhibiting S. aureus and E. coli biofilms. First-generation cephalosporins exhibited the highest inhibitory activity against S. aureus, while the third and fourth generations significantly inhibited E. coli biofilms. This study highlights the importance of tailored antibiotic strategies based on the biofilm characteristics of specific bacterial strains.

Cell proliferation inhibition effects of epigallocatechin-3-gallate in TREK2-channel overexpressing cell line (TREK2-채널 과발현 세포주에서 에피갈로카테킨-3-갈레이트의 세포 증식 억제 효과)

  • Kim, Yangmi;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.127-135
    • /
    • 2016
  • Two-pore domain potassium (K2P) channels are the targets of physiological stimuli, such as intracellular pH, bioactive lipids, and neurotransmitters, and they set the resting membrane potential. Some types of K2P channels play a critical role in both apoptosis and tumoriogenesis. Among the K2P channels, no antagonists of the TREK2 channel have been reported. The aim of the present study was to determine if the TREK2 channel is blocked and whether cell proliferation is influenced by flavonoids in the TREK2 overexpressing HEK293 cells (HEKT2). The electrophysiological current was recorded using single channel patch clamp techniques and cell proliferation was measured using a XTT assay. The electrophysiological results showed that the TREK2 channel activity was reduced to $91.5{\pm}13.1%$ (n=5) and $82.2{\pm}13.7%$ (n=5) by flavonoids, such as epigallocatechin-3-gallate (EGCG) and quercetin in HEKT2 cells, respectively. In contrast, the EGCG analogue, epicatechin (EC), had no significant inhibitory effects on the TREK2 single channel activity. In addition, cell proliferation was reduced to $69.4{\pm}14.0%$ (n=4) by ECGG in the HEKT2 cells. From these results, EGCG and quercetin represent the first known TREK2 channel inhibitors and only EGCG reduced HEKT2 cell proliferation. This suggests that the flavonoids may work primarily by inhibiting the TREK2 channel, leading to a change in the resting membrane potential, and triggering the initiation of a change in intracellular signaling for cell proliferation. TREK2 channel may, at least in part, contribute to cell proliferation.

Antimicrobial Activity of Medicinal Herbs against Salmonella gallinarum and Staphylococcus epidermidis (Salmonella gallinarum와 Staphylococcus epidermidis 균주에 대한 한약재의 항균 활성)

  • Choi, I.;Chang, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • The present study was conducted to investigate the antimicrobial activities of extracts from approximately 40 different traditional Korean medicinal herbs against S. gallinarum and S. epidermidis. The extracts from Schizandra chinensis Baill., Melia azedarach Linn$\acute{e}$, Caesalpinia sappan Linn$\acute{e}$. and Rhus javanica Linn$\acute{e}$. exhibited high antimicrobial activities against S. gallinarum, whereas the extracts from Melia azedarach Linn$\acute{e}$ and Rhus javanica Linn$\acute{e}$. exhibited high antimicrobial growth for S. epidermidis. Minimum inhibitory concentrations (MIC) of Melia azedarach Linn$\acute{e}$, Caesalpinia sappan Linn$\acute{e}$. and Rhus javanica Linn$\acute{e}$. for S. gallinarum were 1.2 mg/mL, whereas MIC of exracts from Rhus javanica Linn$\acute{e}$. extract for S. epidermidis were 0.6 mg/mL. Heat treatment of the extracts from Schizandra chinensis Baill. and Rhus javanica Linn$\acute{e}$. caused a significant reduction in antimicrobial activities against S. gallinarum. but didn't affect antimicrobial activities against S. edidermidis. Alkaline treatment of the extracts from Schizandra chinensis Baill. caused a significant reduction in antimicrobial activities against S. gallinarum, while similar treatment of the extracts from Rhus javanica Linn$\acute{e}$. caused a significant increase in antimicrobial activities against S. edidermidis. Since extracts from Rhus javanica Linn$\acute{e}$. and Caesalpinia sappan Linn$\acute{e}$. exhibited the highest antimicrobial activities, these extracts at the concentrations of 100, 300 or 500 ppm were added and then bacterial growth-inhibiting activities for S. gallinarum and S. epidermidis by these two extracts were further examined. Optical density at 620 nm ($OD_{620}$) after 24 hours incubation in the absence of Rhus javanica Linn$\acute{e}$. extract ranged from 0.30 to 0.45 compared with $OD_{620}$ value ranging from 0.06 to 0.18 in the presence of 100, 300 or 500 ppm of the extract, indicating that growth of all bacteria was significantly inhibited within 24 hours by the addition of at least 100 ppm of Rhus javanica Linn$\acute{e}$ extract. Value of $OD_{620}$ after 24 hours incubation in the absence of Caesalpinia sappan Linn$\acute{e}$. extract ranged from 0.30 to 0.55 compared with $OD_{620}$ value ranging from 0.05 to 0.15 in the presence of 300 or 500 ppm of the extract, indicating that growth of all bacteria was also significantly inhibited within 24 hours by the addition of at least 300 ppm of Caesalpinia sappan Linn$\acute{e}$. extract. In conclusion, these findings suggest that extracts from Rhus javanica Linn$\acute{e}$. and Caesalpinia sappan Linn$\acute{e}$. may play important roles in antimicrobial activities against S. gallinarum and S. epidermidis.

The effect of antagonists produced by Paenibacillus polymyxa CK-1 on the growth of Trichoderma sp. (Paenibacillus polymyxa CK-1이 생산한 길항물질이 Trichoderma sp. 생육에 미치는 영향)

  • Lee, Sang-Won;Choi, Jin-Sang;Kim, Chul-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The separation of the bacteria inhibiting Trichoderma sp. mold, the strain causing blue mold disease that occurs frequently when cultivating mushroom while carrying out the efficient fermentation of mushroom medium, from the growth was done. In about 200 strains isolated primarily from fungus garden samples, 6 strains were secondly isolated, which had fast growth rates and a clear zone on the plate medium of SM, AM, and CM. Among the 6 strains isolated, the C-1 strain showed high enzymatic activity of cellulase, amylase, and protease, and strong antibacterial activity for the T. virens and T. harzianum, selected finally. The selected C-1 strain was identified as Paenibacillus polymyxaby the result of the identification by Bergey's Manual of Systematic Bacteriology and the analysis of the nucleotide sequence of 16S rRNA, and named as P. polymyxa CK-1. In reviewing the growth conditions of the P. polymyxa CK-1 strain, the optimum cultivation temperature was $45^{\circ}C$, and the optimum pH for growth was in the range of 6.0~7.0. Appropriate incubation time of P. polymyxa CK-1 for the growth inhibition of the fungus T. virens and T. harzianum was 22 to 36 hours. And the fungal growth was not observed, even when leaving two molds inoculated on each petri dishes, which were treated with 24 hour culture solution of P. polymyxa CK-1 strain for 10 days. As a result of studying the thermal stability of the antagonists produced by the P. polymyxa CK-1 strain, no mycelial growth of the two fungi was observed in the test group treated for 20 minutes at $60^{\circ}C$ and $100^{\circ}C$, but mycelial growth was slightly observed in the test group treated for 20 minutes at $121^{\circ}C$. As aresult of reviewing the impact of the P. polymyxa CK-1 culture medium on mushroom mycelial growth, it showed no effect on a variety of mushroom mycelial growth including enoki mushroom and shiitake mushroom.

Cholinesterase Activities in Blood and Nervous Tissues of Rats following Intraperitoneal Repetitive Injection of Parathion (Parathion의 복강내 반복투여로 인한 Rat의 혈액 및 신경조직내 Cholinesterase 활성변화)

  • Do, Jae Cheul;Mo, Ki Chul;Kim, Young Hong;Huh, Rhin Sou
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.171-180
    • /
    • 1988
  • Parathion is widely used in agriculture, but it is highly toxic and now clear that parathion behaves like a cholinergic drug by inhibiting the enzyme cholinesterase. In order to know the effect of toxicity and cholinesterase activity in rats injected repeatedly with parathion, cholinesterase activity in plasma, whole brain and spinal cord, and the subacute toxicity after repetitive intraperitoneal injection of parathion 20 times every 3 days were investigated. The results obtained were summerized as follows ; $LD_{50}$ value of parathion given intraperitoneally to rats was 10.5mg/kg(95% confidence limits, 6.6-16.8mg/kg). In subacute toxicity test of parathion injected intraperitoneally, mortality of parathion-pretreated rats(B : 57%, C : 83%) were increased in comparison with the control(50%). Cholinesterase activities in plasma of parathion-pretreated rats(B : 0.47 U/ml, C : 0.36 U/ml, AA : 0.31 U/ml, B : 0.26 U/ml, CC : 0.17 U/ml) were significantly decreased in comparison with the control(0.58 U/ml). Cholinesterase activities in spinal cord of parathion-pretreated rats(B : 1.87 U/g, C : 1.29 U/g, AA : 1.27 U/g, BB : 0.71 U/g, CC : 0.25 U/g) were decreased in comparison with the control(2.48 U/g). Cholinesterase activities in whole brain of parathion-pretreated rats(B : 2.52 U/g, C : 1.32 U/g, AA : 2.48 U/g, BB : 1.08 U/g, CC : 0.51 U/g) were significantly inhibited in comparison with the control(4.67 U/g). However, there were no differences in the urea nitrogen and creatinine concentrations between parathion-pretreated rats and control.

  • PDF

Antioxidant Activities of Dianthus chinensis L. Extract and Its Inhibitory Activities against Nitric Oxide Production and Cancer Cell Growth and Adhesion (패랭이꽃 추출물의 항산화, Nitric Oxide 생성저해, 암세포 성장 및 부착 억제 활성)

  • Lee, Jungjae;Seo, Younggeo;Lee, Junho;Ju, Jihyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The aim of the study was to investigate the antioxidant content and activities of ethanol extract of the edible flower Dianthus chinensis L. (DCE) as well as its inhibitory activities against nitric oxide (NO) production in macrophages and growth and adhesion of human cancer cells. The total polyphenol, flavonoid, and carotenoid levels of DCE were 19.0 mg gallic acid equivalent/g, 65.7 mg quercetin equivalent/g, and $95.0{\mu}g/g$, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power of DCE at a concentration of $1,000{\mu}g/mL$ were 44% and 51%, respectively. In lipopolysaccharide-treated RAW 264.7 macrophages, treatment with DCE at concentrations of 500 and $1,000{\mu}g/mL$ resulted in significantly reduced NO levels (to 7~23% of the control). In H1299 human lung carcinoma cells and HCT116 human colorectal carcinoma cells, treatment with DCE at concentrations of 250, 500, and $1,000{\mu}g/mL$ resulted in dose-dependent growth inhibition. DCE was also effective in inhibiting adhesion of both H1299 cells (to 55% of the control at concentration of $1,000{\mu}g/mL$) and HCT116 (to 26~40% of the control at concentrations of 250, 500, and $1,000{\mu}g/mL$). These results suggest that DCE exerts antioxidant, anti-inflammatory, and anti-cancer activities in vitro.

Anti-inflammatory Activity of Extracts of Hovenia dulcis on Lipopolysaccharides-stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 대식세포에 대한 헛개나무(Hovenia dulcis) 추출물의 항염증 효과)

  • Woo, Hyun Sim;Lee, Sun Min;Heo, Jeong Doo;Lee, Min-Sung;Kim, Yeong-Su;Kim, Dae Wook
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.466-477
    • /
    • 2018
  • In this study, the anti-inflammatory activities of the extracts of different parts of Hovenia dulcis such as leaves, stems, and roots were investigated. Among them, the roots extract (RE) showed the most potent suppressive effect against pro-inflammatory mediators in LPS-stimulated mouse macrophage cells. RE induced dose-dependent reduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and concomitantly reduced the production of NO and $PGE_2$. Additionally, pre-treatment with RE significantly suppressed the production of inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6, as well as mRNA levels. Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-kB) were also strongly attenuated by RE in RAW264.7 cell. Furthermore, RE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increase HO-1 activity in RAW264.7 macrophages. Therefore, these results indicate that RE strongly inhibits LPS-induced inflammatory responses by blocking NF-kB activation, inhibiting MAPKs phosphorylation, and enhancing HO-1 expression in macrophages, suggesting that RE of H. dulicis and a major component, 27-O-protocatechuoylbetulinic acid could be applied as a valuable natural anti-inflammatory material.

The Proteasome Inhibitor MG132 Sensitizes Lung Cancer Cells to TRAIL-induced Apoptosis by Inhibiting NF-κ Activation (폐암세포주에서 NFκ 활성 억제를 통한 Proteasome 억제제 MG132의 TRAIL-유도성 Apoptosis 감작 효과)

  • Seo, Pil Won;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • Background: TRAIL (TNF-related apoptosis inducing ligand) is a newly identified member of the TNF gene family which appears to have tumor-selective cytotoxicity due to the distinct decoy receptor system. TRAIL has direct access to caspase machinery and induces apoptosis regardless of p53 phenotype. Therefore, TRAIL has a therapeutic potential in lung cancer which frequently harbors p53 mutation in more than 50% of cases. However, it was shown that TRAIL also could activates $NF-{\kappa}B$ in some cell lines which might inhibit TRAIL-induced apoptosis. This study was designed to investigate whether TRAIL can activate $NF-{\kappa}B$ in lung cancer cell lines relatively resistant to TRAIL-induced apoptosis and inhibition of $NF-{\kappa}B$ activation using proteasome inhibitor MG132 which blocks $I{\kappa}B{\alpha}$ degradation can sensitize lung cancer cells to TRAIL-induced apoptosis. Methods: A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells were used and cell viability test was done by MTT assay. Apoptosis was confirmed with Annexin V assay followed by FACS analysis. To study $NF-{\kappa}B$-dependent transcriptional activation, a luciferase reporter gene assay was used after making A549 and NCI-H1299 cells stably transfected with IgG ${\kappa}-NF-{\kappa}B$ luciferase construct. To investigate DNA binding of $NF-{\kappa}B$ activated by TRAIL, electromobility shift assay was used and supershift assay was done using anti-p65 antibody. Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation. Results: A549 and NCI-H1299 cells were relatively resistant to TRAIL-induced apoptosis showing only 20~30% cell death even at the concentration 100 ng/ml, but MG132 ($3{\mu}M$) pre-treatment 1 hour prior to TRAIL addition greatly increased cell death more than 80%. Luciferase assay showed TRAIL-induced $NF-{\kappa}B$ transcriptional activity in both cell lines. Electromobility shift assay demonstrated DNA binding complex of $NF-{\kappa}B$ activated by TRAIL and supershift with p65 antibody. $I{\kappa}B{\alpha}$ degradation was proven by western blot. MG132 completely blocked both TRAIL-induced $NF-{\kappa}B$ dependent luciferase activity and DNA binding of $NF-{\kappa}B$. Conclusion: This results suggest that inhibition of $NF-{\kappa}B$ can be a potentially useful strategy to enhance TRAIL-induced tumor cell killing in lung cancer.