• Title/Summary/Keyword: inherent safety

Search Result 266, Processing Time 0.027 seconds

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

A Comparative Study on Slope Stability by Case Examination (사례 해석에 의한 사면해석의 비교 연구)

  • 백영식;김일헌
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 1990
  • The accuracy of a limit equilibrium analysis of slope stability depends on the accuracy with which the strength properties and geometric conditions can be defined, and on the inherent accuracy of the method of analysis. Most of the slope stability analysis method have been computer coded, and this is a comparative study on the accuracy of these programs. Comparative analyses have shown that for the slopes with relatively simple conditions Host of the programs which are widely used in this country result in the same value of safety factor with an accuracy no worse than $\pm$5%. Similar results can be obtained from the examination of the several slope failure for which accurate information is available on the strength and geometric conditions of the earth slope. The critical failure surface, however, can be different from the actual slip surface, although nearly the same factors of safety are obtained from the analyses of each surface.

  • PDF

A Study on the Position Error of the Aids to Navigation as a Safety Factor at Sea (선박 안전항행을 위한 항로표지의 위치오차 분석)

  • Kwon, Hyuk-Dong;Kim, Woong-Gyu;Lee, Joo-Hyung;Park, Gyei-Kark
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Aids to Navigation is one of the most important facility for safety at sea. However, in terms of position there always exists discrepancy in inventory by media and/or organizational body who maintains the facility which may result in incredibility for navigator's position fixing or hazard avoidance. This paper suggests two major factors as the causes of the position error when they design, install and survey the aids to navigation. One is the function of direction of tide and water depth which makes swinging circle. The other is a variable value by time resulting from multiple coordination of satellites in contact. This paper aims to minimize inaccuracy by verifying its reason through numerical analysis over inherent position error.

  • PDF

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.

Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors

  • Lim, Do Kyun;Song, Min Seop;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1279-1288
    • /
    • 2019
  • The vortex-type fluidic diode (FD) is a key safety component for inherent safety in various advanced reactors such as the sodium fast reactor (SFR) and the molten salt reactor (MSR). In this study, topology optimization is conducted to optimize the design of the vortex-type fluidic diode. The optimization domain is simplified to 2-dimensional geometry for a tangential port and chamber. As a result, a design with a circular chamber and a restrictor at the tangential port is obtained. To verify the new design, experimental study and computational fluid dynamics (CFD) analysis were conducted for inlet Reynolds numbers between 2000 and 6000. However, the results show that the performance of the new design is no better than the original reference design. To analyze the cause of this result, detailed analysis is performed on the velocity and pressure field using flow visualization experiments and 3-D CFD analysis. The results show that the discrepancy between the optimization results in 2-D and the experimental results in 3-D originated from exclusion of an important pressure loss contributor in the optimization process. This study also concludes that the junction design of the axial port and chamber offers potential for improvement of fluidic diode performance.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

Analysis of Tensile Strength Changes by Outdoor Exposure of Scaffolding PP Fiber Rope (달비계용 PP섬유로프의 야외노출에 따른 인장강도 변화 분석)

  • Sung-Yun Kang;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2023
  • The use of hanging scaffolding for exterior wall painting and cleaning in building construction and maintenance carries the inherent risk of fall accidents. While periodic rope replacement is crucial for preventing accidents resulting from rope breakage, current regulations lack specificity in determining appropriate disposal period for fiber ropes. This study analyzed the tensile strength of the most commonly used PP fiber ropes with different diameters (16 mm, 20 mm) in the domestic construction industry. Additionally, the effect of outdoor exposure was examined by measuring the tensile strength of new ropes and ropes exposing to outdoor conditions for 30 days and 90 days. The results showed that the new ropes and those exposed to outdoor for 30 days met the KS (Korean Standards) criteria for tensile strength. However, a significant decrease in tensile strength was observed in ropes exposed to outdoor for 90 days compared to both the new ropes and those exposed for 30 days. Furthermore, the ropes exposed for 90 days did not meet the KS criteria. These findings indicate the degradation of PP fiber ropes due to UV (Ultra Violet) radiation, highlighting the importance of considering this factor when determining the replacement period for fiber ropes used in scaffolding work.

Applications and Concerns of Generative AI: ChatGPT in the Field of Occupational Health (산업보건분야에서의 생성형 AI: ChatGPT 활용과 우려)

  • Ju Hong Park;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.412-418
    • /
    • 2023
  • As advances in artificial intelligence (AI) increasingly approach areas once relegated to the realm of science fiction, there is growing public interest in using these technologies for practical everyday tasks in both the home and the workplace. This paper explores the applications of and implications for of using ChatGPT, a conversational AI model based on GPT-3.5 and GPT-4.0, in the field of occupational health and safety. After gaining over one million users within five days of its launch, ChatGPT has shown promise in addressing issues ranging from emergency response to chemical exposure to recommending personal protective equipment. However, despite its potential usefulness, the integration of AI into scientific work and professional settings raises several concerns. These concerns include the ethical dimensions of recognizing AI as a co-author in academic publications, the limitations and biases inherent in the data used to train these models, legal responsibilities in professional contexts, and potential shifts in employment following technological advances. This paper aims to provide a comprehensive overview of these issues and to contribute to the ongoing dialogue on the responsible use of AI in occupational health and safety.

Evaluating direct vessel injection accident-event progression of AP1000 and key figures of merit to support the design and development of water-cooled small modular reactors

  • Hossam H. Abdellatif;Palash K. Bhowmik;David Arcilesi;Piyush Sabharwall
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2375-2387
    • /
    • 2024
  • The passive safety systems (PSSs) within water-cooled reactors are meticulously engineered to function autonomously, requiring no external power source or manual intervention. They depend exclusively on inherent natural forces and the fundamental principles of reactor physics, such as gravity, natural convection, and phase changes, to manage, alleviate, and avert the release of radioactive materials into the environment during accident scenarios like a loss-of-coolant accident (LOCA). PSSs are already integrated into such operating commercial reactors as the Advanced Pressurized Reactor-1000 MWe (AP1000) and the Water-Water Energetic Reactor-1200 MWe (WWER-1200) are adopted in most of the upcoming small modular reactor (SMR) designs. Examples of water-cooled SMR PSSs are the passive emergency core-cooling system (ECCS), passive containment cooling system (PCCS), and passive decay-heat removal system, the designs of which vary based on reactor system-design requirements. However, understanding the accident-event progression and phases of a LOCA is pivotal for adopting a specific PSS for a new SMR design. This study covers the accident-event progression for direct vessel injection (DVI) small-break loss-of-coolant accident (SB-LOCA), associated physics phenomena, knowledge gaps, and important figures of merit (FOMs) that may need to be evaluated and assessed to validate thermal-hydraulics models with an available experimental dataset to support new SMR design and development.

Seismic Safety Assessment of the Turbine-Generator Foundation using Probabilistic Structural Reliability Analysis (확률론적 구조신뢰성해석을 이용한 터빈발전기 기초의 지진 안전성 평가)

  • Joe, Yang-Hee;Kim, Jae-Suk;Han, Sung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 2008
  • Most of the civil structure - bridges, offshore structures, plant, etc. - have been designed by the classical approaches which deal with all the design parameters as deterministic variables. However, some more advanced techniques are required to evaluate the inherent randomness and uncertainty of each design variable. In this research, a seismic safety assessment algorithm based on the structural reliability analysis has been formulated and computerized for more reasonable seismic design of turbine-generator foundations. The formulation takes the design parameters of the system and loading properties as random variables. Using the proposed method, various kinds of parametric studies have been performed and probabilistic characteristics of the resulted structural responses have been evaluated. Afterwards, the probabilistic safety of the system has been quantitatively evaluated and finally presented as the reliability indexes and failure probabilities. The proposed procedure is expected to be used as a fundamental tool to improve the existing design techniques of turbine-generator foundations.