DOI QR코드

DOI QR Code

Evaluating direct vessel injection accident-event progression of AP1000 and key figures of merit to support the design and development of water-cooled small modular reactors

  • Hossam H. Abdellatif (University of Idaho) ;
  • Palash K. Bhowmik (Idaho National Laboratory) ;
  • David Arcilesi (University of Idaho) ;
  • Piyush Sabharwall (Idaho National Laboratory)
  • Received : 2023.08.31
  • Accepted : 2024.01.30
  • Published : 2024.06.25

Abstract

The passive safety systems (PSSs) within water-cooled reactors are meticulously engineered to function autonomously, requiring no external power source or manual intervention. They depend exclusively on inherent natural forces and the fundamental principles of reactor physics, such as gravity, natural convection, and phase changes, to manage, alleviate, and avert the release of radioactive materials into the environment during accident scenarios like a loss-of-coolant accident (LOCA). PSSs are already integrated into such operating commercial reactors as the Advanced Pressurized Reactor-1000 MWe (AP1000) and the Water-Water Energetic Reactor-1200 MWe (WWER-1200) are adopted in most of the upcoming small modular reactor (SMR) designs. Examples of water-cooled SMR PSSs are the passive emergency core-cooling system (ECCS), passive containment cooling system (PCCS), and passive decay-heat removal system, the designs of which vary based on reactor system-design requirements. However, understanding the accident-event progression and phases of a LOCA is pivotal for adopting a specific PSS for a new SMR design. This study covers the accident-event progression for direct vessel injection (DVI) small-break loss-of-coolant accident (SB-LOCA), associated physics phenomena, knowledge gaps, and important figures of merit (FOMs) that may need to be evaluated and assessed to validate thermal-hydraulics models with an available experimental dataset to support new SMR design and development.

Keywords

Acknowledgement

This research was funded by United State (U.S.) Department of Energy (DOE) Advanced Reactor Demonstration Project (ARDP) program office grant number ARDP-20-23819. Funding Opportunity Number DE-FOA-0002271, Risk Reduction Pathway. The authors would like to thank the U.S. DOE National Reactor Innovation Center (NRIC), ARDP program office, and Irradiation Experiment and Thermal Hydraulics Analysis Department at Idaho National Laboratory (INL) for the encouragement and support.

References

  1. Westinghouse, "AP600 Design Change Description Report," Proprietary Class 2C Report, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 1994. 
  2. H. Sun, Y. Zhang, W. Tian, S. Qiu, G. Su, Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC, Nucl. Eng. Technol. 52 (5) (2020) 937-946, https://doi.org/10.1016/j.net.2019.10.011. 
  3. Y. Li, Z. Ye, J. Zhang, H. Chang, Core makeup tank behavior investigation during ACME integral effect tests, Nucl. Eng. Des. 364 (2020) 110701, https://doi.org/10.1016/j.nucengdes.2020.110701. 
  4. K. Choi, S. Cho, K. Kang, H. Park, Y. Kim, Comparison of integral thermal-hydraulic behaviors of a DVI line break SBLOCA with an equivalent cold leg break, Nucl. Eng. Des. 273 (2014) 421-434, https://doi.org/10.1016/j.nucengdes.2014.02.033. 
  5. J.J. Jeong, K.S. Ha, B.D. Chung, W. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1, Ann. Nucl. Energy 26 (18) (1999) 1611-1642, https://doi.org/10.1016/s0306-4549(99)00039-0. 
  6. Z. Qiu, H. Yu, Q. Xiong, X. Cao, L. Tong, Uncertainty and sensitivity analysis of the DVI line break loss of coolant accident for small modular reactor, Prog. Nucl. Energy 157 (2023) 104575, https://doi.org/10.1016/j.pnucene.2023.104575.
  7. Y. Kim, H. Bae, B. Jeon, Y. Bang, S. Yi, H. Park, Investigation of thermal hydraulic behavior of SBLOCA tests in SMART-ITL facility, Ann. Nucl. Energy 113 (2018) 25-36, https://doi.org/10.1016/j.anucene.2017.11.013. 
  8. H. Wang, C. Xu, K. Cao, H. Chang, P. Chen, ADS-IRWST transient evaluation model for AP1000 SBLOCA analysis, Ann. Nucl. Energy 100 (2) (2017) 169-177, https://doi.org/10.1016/j.anucene.2016.08.027. 
  9. T.L. Schulz, Westinghouse AP1000 advanced passive plant, Nucl. Eng. Des. 236 (14-16) (2006) 1547-1557, https://doi.org/10.1016/j.nucengdes.2006.03.049. 
  10. C. Zeliang, Y. Mi, A. Tokuhiro, L. Lu, A. Rezvoi, Integral PWR-type small modular reactor developmental status, design characteristics and passive features: a review, Energies 13 (11) (2020) 2898, https://doi.org/10.3390/en13112898. 
  11. K.I. Ahn, K.H. Lee, S.W. Lee, G. Choi, S.W. Hwang, Estimation of fission product source terms for the SGTR accident of a reference PWR plant using MELCOR and MAAP5, Nucl. Eng. Des. 371 (2021) 110967, https://doi.org/10.1016/j.nucengdes.2020.110967. 
  12. P.K. Bhowmik, S.J. Ormiston, J.P. Schlegel, D. Chowdhury, State-of-the-art and review of condensation heat transfer for small modular reactor passive safety: computational studies, Nucl. Eng. Des. 410 (2023) 112366, https://doi.org/10.1016/j.nucengdes.2023.112366. 
  13. P.K. Bhowmik, J.P. Schlegel, S. Revankar, State-of-the-art and review of condensation heat transfer for small modular reactor passive safety: experimental studies, Int. J. Heat Mass Tran. 192 (2022) 122936, https://doi.org/10.1016/j.ijheatmasstransfer.2022.122936. 
  14. J. Zhang, C. Schneidesch, Application of the BEPU safety analysis method to quantify margins in nuclear power plants, Nucl. Eng. Des. 406 (2023) 112233, https://doi.org/10.1016/j.nucengdes.2023.112233. 
  15. A. Auvinen, J.K. Jokiniemi, A. Lahde, T. Routamo, P. Lundstrom, H. Tuomisto, J. Dienstbier, S. Guntay, D. Suckow, A. Dehbi, M. Slootman, L. Herranz, V. Peyres, J. Polo, Steam generator tube rupture (SGTR) scenarios, Nucl. Eng. Des. 235 (2-4) (2005) 457-472, https://doi.org/10.1016/j.nucengdes.2004.08.060. 
  16. P.K. Bhowmik, C.E.E. Perez, J.D. Fishler, S.A.B. Prieto, I.D. Reichow, J.T. Johnson, P. Sabharwall, J.E. O'Brien, Integral and separate effects test facilities to support water cooled small modular reactors: a review, Prog. Nucl. Energy 160 (2023) 104697, https://doi.org/10.1016/j.pnucene.2023.104697. 
  17. S. Kamalpour, H. Khalafi, SMART reactor core design optimization based on FCM fuel, Nucl. Eng. Des. 372 (2021) 110970, https://doi.org/10.1016/j.nucengdes.2020.110970. 
  18. AP300TM Small Modular Reactor. https://www.westinghousenuclear.com/energy-systems/ap300-smr. 
  19. E.M. Hussein, Emerging small modular nuclear power reactors: a critical review, Physics Open 5 (2020) 100038, https://doi.org/10.1016/j.physo.2020.100038. 
  20. Westinghouse, Nuclear Safety - Unequaled Design, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2023. Available at: https://www.westinghousenuclear.com/energy-systems/ap1000-pwr/safety. (Accessed 13 November 2023). 
  21. M.M. Corletti, AP1000 Plant Description and Analysis Report, Technical Report, WCAP-15612, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2000. Available at: https://www.nrc.gov/docs/ml0037/ML003779406.pdf. (Accessed 13 November 2023). 
  22. D. Lioce, M. Asztalos, A. Alemberti, L. Barucca, M. Frogheri, G. Saiu, AP1000 passive core cooling system preoperational tests procedure definition and simulation by means of Relap5 Mod. 3.3 computer code, Nucl. Eng. Des. 250 (2012) 538-547, https://doi.org/10.1016/j.nucengdes.2012.05.028. 
  23. Westinghouse, Accident Analyses," in AP1000 Design Control Document, Technical Report, Revision 19, (Chapter 15), ML11171-A367, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2011. Available at: https://www.nrc.gov/docs/ML1117/ML11171A367.pdf. (Accessed 13 November 2023). 
  24. J. Yang, W.W. Wang, S.Z. Qiu, W.X. Tian, G.H. Su, Y.W. Wu, Simulation and analysis on 10-in. cold leg small break LOCA for AP1000, Ann. Nucl. Energy 46 (2012) 81-89, https://doi.org/10.1016/j.anucene.2012.03.007. 
  25. A.E. Elshahat, T. Abram, J.K. Hohorst, C.M. Allison, Simulation of the Westinghouse AP1000 response to SBLOCA using RELAP/SCDAPSIM, Int. J. Nucl. Energy (2014) 410715, https://doi.org/10.1155/2014/410715, 2014. 
  26. R.F. Wright, Simulated AP1000 response to design basis small-break LOCA events in APEX-1000 test facility, Nucl. Eng. Technol. 39 (4) (2007) 287-298, https://doi.org/10.5516/NET.2007.39.4.287. 
  27. Westinghouse, AP1000 Design Control Document, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2004. Technical Report, Revision 18. 
  28. B.E. Boyack, J.F. Lime, "Intermediate-break LOCA Analyses for the AP600 design." LA-UR-95-1785, Los Alamos National Laboratory, Los Alamos, NM, USA, 1995, https://doi.org/10.2172/105674. 
  29. J. Montero-Mayorga, C. Queral, J. Gonzalez-Cadelo, AP1000® SBLOCA simulations with TRACE code, Ann. Nucl. Energy 75 (2015) 87-100, https://doi.org/10.1016/j.anucene.2014.07.045. 
  30. Westinghouse, AP1000 Design Control Document, Technical Report, Revision 17, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2008. Available at: https://www.nrc.gov/docs/ML0832/ML083230868.html. (Accessed 13 November 2023). 
  31. Westinghouse, AP1000 Probabilistic Risk Assessment Report, Westinghouse Electric Company, LLC, Pittsburgh, PA, USA, 2003. Technical Report, Rev. 1. 
  32. P.E. Meyer, "NOTRUMP-A Nodal Transient Small-Break and General Network Code." WCAP-10079-P-A (Proprietary) and WCAP-10080-A (Nonproprietary), U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 1985. 
  33. 10 CFR 50.46, "Acceptance Criteria for Emergency Core-Cooling Systems for Light Water-Cooled Nuclear Power Reactors," and Appendix K to 10 CFR 50, "ECCS Evaluation Models." U.S. Nuclear Regulatory Commission, Washington, D.C., USA. Available at: https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0046.html (accessed 13 November 2023). 
  34. G.E. Wilson, C.D. Fletcher, C.B. Davis, J.D. Burtt, T.J. Boucher, Phenomena Identification and Ranking Tables for Westinghouse AP600 Small Break Loss-Of-Coolant Accident, Main Steam Line Break, and Steam Generator Tube Rupture Scenarios, U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 1997, https://doi.org/10.2172/501518. NUREG/CR-6541-Rev.2; INEL-94/0061-Rev.2. 
  35. W. Brown, R. Ofstun, PIRT/scaling assessment for AP1000, in: International Conference on Nuclear Engineering, 2001, 8-12 April 2001, Nice, Acropolis, France. Available at: https://www.osti.gov/etdeweb/biblio/20232080. (Accessed 13 November 2023). 
  36. L. Yuquan, H. Botao, Z. Jia, W. Nan, Comparative experiments to assess the effects of accumulator nitrogen injection on passive core cooling during small break LOCA, Nucl. Eng. Technol. 49 (1) (2017) 54-70, https://doi.org/10.1016/j.net.2016.06.014. 
  37. F. D'Auria, M. Frogheri, Use of a natural circulation map for assessing PWR performance, Nucl. Eng. Des. 215 (1-2) (2002) 111-126, https://doi.org/10.1016/S0029-5493(02)00045-6. 
  38. F. D'Auria, Thermal-hydraulics of Water-Cooled Nuclear Reactors, Woodhead Publishing, Sawston, United Kingdom, 2017, https://doi.org/10.1016/B978-0-08-100662-7.09994-2. 
  39. W.W. Wang, G.H. Su, S.Z. Qiu, W.X. Tian, Thermal hydraulic phenomena related to small break LOCAs in AP1000, Prog. Nucl. Energy 53 (4) (2011) 407-419, https://doi.org/10.1016/j.pnucene.2011.02.007. 
  40. F. D'Auria, Natural circulation situations relevant to nuclear power plants, in: Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water-Cooled Reactors (SMR 2349), 2009, 3-7 December 2012, Trieste, Italy. 
  41. G. De Santi, L. Piplies, J. Sanders, Mass flow instabilities in LOBI steam generators U-tubes under natural circulation conditions, in: J. Wakabayashi, H. Nariai (Eds.), Second International Meeting on Nuclear Power Plant Thermal-Hydraulics and Operations, 1986, 15-17 April 1986, Tokyo, Japan. pp. 2/158-2/165. 
  42. N. Lee, Limiting countercurrent flow phenomenon in small break LOCA transients, Nucl. Eng. Des. 102 (2) (1987) 211-216, https://doi.org/10.1016/0029-5493(87)90254-8. 
  43. K. Tasaka, Y. Kukita, Y. Koizumia, M. Osakabe, H. Nakamura, The results of 5% small-break LOCA tests and natural circulation tests at the ROSA-IV LSTF, Nucl. Eng. Des. 108 (1-2) (1988) 37-44, https://doi.org/10.1016/0029-5493(88)90054-4. 
  44. F. D'Auria, G.M. Galassi, Flowrate and density oscillations during two-phase natural circulation in PWR typical conditions, Nucl. Eng. Des. 122 (1-3) (1990) 209-218, https://doi.org/10.1016/0029-5493(90)90207-E. 
  45. J.N. Reyes Jr., Flow stagnation and thermal stratification in single and two-phase natural circulation loops, in: Natural Circulation in Water-Cooled Nuclear Power Plants, ANNEX 15, IAEA-TECDOC-1474, International Atomic Energy Agency, Vienna, Austria, 2004, pp. 433-460. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/032/37032143.pdf?r=1. (Accessed 13 November 2023). 
  46. A. Minato, R. Kawabe, H. Yamanouchi, H. Kato, SENHOR-IV: a computer code for small pipe-break analysis of pressure-tube type reactors, Nucl. Eng. Des. 53 (3) (1979) 377-385, https://doi.org/10.1016/0029-5493(79)90064-5. 
  47. S. Wongwises, Two-phase countercurrent flow in a model of a pressurized water reactor hot-leg, Nucl. Eng. Des. 166 (2) (1996) 121-133, https://doi.org/10.1016/0029-5493(96)01272-1. 
  48. M. Solmos, K.J. Hogan, K. Vierow, Flooding experiments and modeling for improved reactor safety, in: U.S.-Japan Two-phase Flow Seminar, 2009, 14-18 September 2008, Santa Monica, CA, USA. Available at: https://www.osti.gov/servlets/purl/936720. (Accessed 13 November 2023). 
  49. M.J. Jhung, S.H. Kim, Y.H. Choi, Y.S. Chang, X. Xu, J.M. Kim, J.W. Kim, C. Jang, Probabilistic fracture mechanics round robin analysis of reactor pressure vessels during pressurized thermal shock, J. Nucl. Sci. Technol. 47 (12) (2010) 1131-1139, https://doi.org/10.1080/18811248.2010.9720980. 
  50. H.-S. Kang, J. Kim, S.-W. Hong, Numerical analysis for hydrogen flame acceleration during a severe accident initiated by SBLOCA in the APR1400 containment, Hydro 3 (1) (2022) 28-42, https://doi.org/10.3390/hydrogen3010002. 
  51. H. Zhao, X. Luo, R. Zhang, X. Lyu, H. Yin, Z. Kang, Analysis on hydrogen risk under LOCA in marine nuclear reactor, Exp. Comput. Multiph. Flow 4 (1) (2021) 39-44, https://doi.org/10.1007/s42757-020-0077-2. 
  52. X.-G. Huang, Y.-H. Yang, Analysis of characters and efficiency for ignitor in hydrogen mitigation system, Yuanzineng Kexue Jishu/At. Energy Sci. Technol. 45 (6) (2011) 716-721. Available at: https://www.researchgate.net/publication/286381352. (Accessed 13 November 2023). 
  53. X. Meng, X. Lu, B. Wang, S. Liu, Y. Yu, Z. Guo, The measure on mitigating hydrogen risk during LOCA accident in nuclear power plant, Ann. Nucl. Energy 136 (2020) 107032, https://doi.org/10.1016/j.anucene.2019.107032. 
  54. Z. Fang, Z. Shuliang, L. Zejun, X. Tao, X. Shoulong, H. Yan, F. Jinjun, Study on release and migration of radionuclides under the small break loss of coolant accident in a marine reactor, Sci. Technol. Nucl. Install. (2021) 1-12, https://doi.org/10.1155/2021/6635950, 2021. 
  55. P.K. Bhowmik, P. Sabharwall, Sizing and selection of pressure relief valves for high-pressure thermal-hydraulic systems, Processes 12 (1) (2023) 21, https://doi.org/10.3390/pr12010021. 
  56. H.H. Abdellatif, P.K. Bhowmik, D. Arcilesi, P. Sabharwall, Accident event progression, gaps, and key performance indicators for steam generator tube rupture events in water-cooled SMRs: a review, Prog. Nucl. Energy 168 (2024) 105021, https://doi.org/10.1016/j.pnucene.2023.105021.
  57. P.K. Bhowmik, J.P. Schlegel, V. Kalra, S. Alam, S. Hong, S. Usman, CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 1: pure steam, Exp. Comput. Multiph. Flow 4 (4) (2022) 409-423, https://doi.org/10.1007/s42757-021-0115-5, 2022. 
  58. P.K. Bhowmik, J.P. Schlegel, V. Kalra, S. Alam, S. Hong, S. Usman, CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 2: steam and non-condensable gas, Exp. Comput. Multiph. Flow 4 (2022) 424-434, https://doi.org/10.1007/s42757-021-0113-7, 2022. 
  59. P.K. Bhowmik, J.P. Schlegel, Multicomponent gas mixture parametric CFD study of condensation heat transfer in small modular reactor system safety, Exp. Comput. Multiph. Flow 5 (2023) 15-28, https://doi.org/10.1007/s42757-022-0136-8.