• 제목/요약/키워드: inhalation toxicity

검색결과 146건 처리시간 0.028초

석유화학단지 주변 주거지역 다환방향족탄화수소(PAHs)의 농도와 Monte-Carlo 모의실험을 통한 위해성평가 (Seasonal Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Residential Areas Around Petrochemical Complexes and Risk Assessment Using Monte-Carlo Simulation)

  • 박동윤;최영태;양원호;최길용;이채관
    • 한국환경보건학회지
    • /
    • 제47권4호
    • /
    • pp.366-377
    • /
    • 2021
  • Background: Polycyclic aromatic hydrocarbons (PAHs) are generated in petrochemical complexes, can spread to residential areas and affect the health of residents. Although harmful PAHs are mainly present in particle phase, gas phase PAHs can generate stronger toxic substances through photochemical reaction. Therefore, the risk assessment for PAHs around the petrochemical complex should consider both particle and gas phase concentrations. Objectives: This study aimed to investigate the concentration characteristics of particle and gas phase PAHs by season in residential areas around petrochemical complexes, and to assess the risk of PAHs. Methods: Samples were collected for 7 days by seasons in 2014~2015 using a high volume air sampler. Particle and gas phase PAHs were sampled using quartz filter and polyurethane foam, respectively, analyzed by GC-MS. Chronic toxicity and probabilistic risk assessment were performed on 14 PAHs. For chronic toxicity risk assessment, inhalation unit risk was used. Monte-Carlo simulation was performed for probabilistic risk assessment using the mean and standard deviation of measured PAHs. Results: The concentration of particle total PAHs was highest in autumn. The gas phase concentration was highest in autumn. The average gas phase distribution ratio of low molecular weight PAHs composed of 2~3 benzene rings was 85%. The average of the medium molecular weight composed of 4 benzene rings was 53%, and the average of the high molecular weight composed of 5 or more benzene rings was 9%. In the chronic toxicity risk assessment, 7 of the 14 PAHs exceeded the excess carcinogenic risk of 1.00×10-6. In the Monte-Carlo simulation, Benzo[a]pyrene had the highest probability of exceeding 1.00×10-6, which was 100%. Conclusions: The concentration of PAHs in the residential area around the petrochemical complex exceeded the standard, and the excess carcinogenic risk was evaluated to be high. Therefore, it is necessary to manage the air environment around the petrochemical complex.

PHMG (polyhexamethylene guanidine) 흡입독성참고치 산출을 통한 가습기살균제 노출등급 분류 및 특성 (Classification and Characterization of Exposure Rating in Humidifier Disinfectants through Calculation of PHMG Reference Concentration)

  • 김은채;류현수;박진현;최영태;허정;이슬아;조은경;최윤형;조만수;양원호
    • 한국환경보건학회지
    • /
    • 제46권3호
    • /
    • pp.335-343
    • /
    • 2020
  • Objectives: The Korean Ministry of Environment has identified cases of people suspected of suffering lung disease potentially caused by polyhexamethylene guanidine (PHMG) used in humidifier disinfectants (HDs). Exposure assessment for the HDs was conducted using a questionnaire during face-to-face interview. The main purposes of this study were to develop a methodology to effectively classify levels of exposure to HDs based on a questionnaire. Methods: We first identified the overall participants' exposure characteristics by HD exposure levels; Second, we selected misclassified subjects and investigated characteristics of overestimated and underestimated subjects, focusing on exposure cases to PHMG-containing HDs. An inhalation reference concentration (RfC) for PHMG was produced on the basis of inhalation toxicity values. We made a cross-tabulation of the exposure classes (Exposure classes 1-to-4) by clinical classes based on the RfC. When the value of the exposure class minus the clinical class was 0 or 1, we assumed these were true values. When the value was ≥2 and ≤ -2, we assigned these cases to the overestimation group and underestimation group, respectively. Results: The overestimated group may have already recovered and responded excessively due to psychological anxiety or in order to receive compensation. On the other hand, relatively high mortality rates and surrogate responses for those under 10 years of age may have resulted in inaccurate exposure assessment for underestimated groups. For the characteristics of exposure, it was shown that for the underestimated group, the exposure was relatively weaker than the overestimated group, even though a high overall clinical rating was determined. Conclusions: This study may suggest ways to reduce bias and overcome the limitations of current HD exposure assessment.

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • 제35권1호
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

PSM 제출대상 독성물질의 규정량 합리화에 대한 연구 (A Study on Reforming Threshold Quantities of Toxic Substances in Process Safety Management)

  • 이주엽;이근원;김태옥
    • 한국가스학회지
    • /
    • 제21권4호
    • /
    • pp.6-15
    • /
    • 2017
  • 화학사고의 발생을 감소시키고, 예방하기 위한 공정안전관리(PSM) 제도는 우리나라의 경우 1996년부터 시행되었다. 그러나 PSM 제출대상인 기존 21종 물질에 대한 규정량과 새로이 추가된 브롬화수소 등의 독성물질의 규정량에 대한 타당성 검토가 미흡하여 많은 문제점이 발생되고 있다. 본 연구에서는 25종의 PSM 제출대상독성물질의 규정량을 국내 외 공정안전관리제도와 관련된 규정량과 비교 검토하였다. 그리고 흡입독성, NFPA 지수 등으로 구성된 독성 유해 위험성 식을 제안하여 고위험, 중위험, 저위험의 3등급으로 독성물질을 분류하고, 규정량의 조정에 반영하였다. 본 연구결과의 규정량 개선안은 유사 공정안전관리제도의 규정량 차이로 인한 사업장의 혼란과 부담 완화 및 합리적 개선에 도움을 줄 것으로 기대된다.

Effects of Inhalable Microparticles of Seonpyejeongcheon-Tang in an Asthma Mouse Model - Effects of Microparticles of SJT -

  • Yang, Won-Kyung;Lee, Chul-Hwa;Kim, Min-Hee;Kim, Seung-Hyeong;Choi, Hae-Yoon;Yeo, Yoon;Park, Yang-Chun
    • 대한약침학회지
    • /
    • 제19권4호
    • /
    • pp.303-311
    • /
    • 2016
  • Objectives: Allergic asthma generally presents with symptoms of wheezing, coughing, breathlessness, and airway inflammation. Seonpyejeongcheon-tang (SJT) consists of 12 herbs. It originated from Jeong-cheon-tang (JT), also known as Ding-chuan-tang, composed of 7 herbs, in She-sheng-zhong-miao-fang. This study aimed to evaluate the effects of local delivery of SJT via inhalable microparticles in an asthma mouse model. Methods: Microparticles containing SJT were produced by spray-drying with leucine as an excipient. SJT microparticles were evaluated with respect to their aerodynamic properties, in vitro cytotoxicity, in vivo toxicity, and therapeutic effects on ovalbumin (OVA)-induced asthma in comparison with orally-administered SJT. Results: SJT microparticles provided desirable aerodynamic properties (fine particle fraction of $48.9%{\pm}6.4%$ and mass median aerodynamic diameter of $3.7{\pm}0.3{\mu}m$). SJT microparticles did not show any cytotoxicity against RAW 264.7 macrophages at concentrations of 0.01 - 3 mg/mL. Inhaled SJT microparticles decreased the levels of IL-4, IL-5, IL-13, IL-17A, eotaxin and OVA-IgE in bronchoalveolar lavage fluid (BALF) in mice with OVA-induced asthma. These effects were verified by histological evaluation of the levels of infiltration of inflammatory cells and collagen, destructions of alveoli and bronchioles, and hyperplasia of goblet cells in lung tissues. The effects of SJT microparticles in the asthma model were equivalent to those of orally-administered SJT extract. Conclusion: This study suggests that SJT is a promising agent for inhalation therapy for patients with asthma.

Inhaled Formaldehyde Induces Bone Marrow Toxicity via Oxidative Stress in Exposed Mice

  • Yu, Guang-Yan;Song, Xiang-Fu;Liu, Ying;Sun, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5253-5257
    • /
    • 2014
  • Formaldehyde (FA) is an economically important chemical, and has been found to cause various types of toxic damage to the body. Formaldehyde-induced toxic damage involves reactive oxygen species (ROS) that trigger subsequent toxic effects and inflammatory responses, which may increase risk of cancer. Therefore, in the present study, we aimed to investigate the possible toxic mechanism in bone marrow caused by formaldehyde. In accordance with the principle of randomization, the mice were divided into four groups of 6 mice per group. One group was exposed to ambient air and the other three groups were exposed to different concentrations of formaldehyde (20, 40, $80mg/m^3$) for 15 days in the respective inhalation chambers, 2h a day. At the end of the 15-day experimental period, all mice were killed. Bone marrow cells were obtained. Some of those were used for the determination of blood cell numbers, bone marrow karyote numbers, CFU-F, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content; others were used for the determination of mitochondrial membrane potential (MMP), cell cycle and Bcl-2, Bax, CytC protein expression. WBC and PLT numbers in median and high dose groups were obvious reduced, but there was no change on RBC numbers. There was also reduced numbers of bone marrow karyotes and CFU-F in the high dose group. SOD activity was decreased, but MDA content was increased. MMP and Bcl-2 expression were decreased with increasing formaldehyde concentration, while expression of Bax and Cyt C was increased. We also observed change in cell cycling, and found that there was S phase arrest in the high dose group. Our study suggested that a certain concentration of formaldehyde could have toxic effects on the hematopoietic system, with oxidative stress as a critical effect.

BM-solution에 노출된 Rat의 안전성에 관한 조사 (A Safety Experiment in Rats Exposed to BM-solution)

  • 김동규;김기현;이남진;박종배;조정희;김윤배;강종구;김영권;황석연
    • 대한임상검사과학회지
    • /
    • 제36권2호
    • /
    • pp.245-251
    • /
    • 2004
  • This study was experiment on the safety of rat(Sprague-Dawley) exposed to natural herb oil(BM-solution). BM-solution was administered by inhalation to rats with the dose level of low(30 mg/8 min), middle(30 mg/4 min) and high(50 mg/4 min) in an airtight room for 4 weeks, respectively. Each groups, consisting of 5 rats, was examined for body weight changes, hematological analysis, serum biochemical analysis, organ weight, and histopathological findings, respectively. There were, dose-dependently, no changes of body weight and organ weights, no hematological anomalousness, and no other serum biochemical abnormality from the experiments. In addition, BM-solution was shown to have no specific toxicity by gross and histopathological findings. Therefore, it was concluded that BM-solution had no side effects on rats for 4 weeks.

  • PDF

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • 제45권6호
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

A pilot study of a new fingerprint powder application method for the reduction of health risk

  • Kim, Eun-Ji;Lee, Da-Eun;Park, Suk-Won;Seo, Kyung-Suk;Choi, Sung-Woon
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.196-209
    • /
    • 2019
  • As a traditional method to apply fingerprint powder, brush method ("dusting") can create a risk to the health of crime scene investigators due to the inhalation toxicity of harmful and fine powders. Therefore, as a new method of applying powders, we tried to evaluate the potential of a chamber method for the development of latent fingerprint using fans in a closed chamber with a fixed capacity that can prevent the powders from being blown outside and exposed to the users, by comparing with the development results of the conventional brush method. Fingerprints on glass and plastic (PET) were extracted with black powder and green fluorescent powder, and the sharpness and minutiae of the developed fingerprints were compared for each method. The results of the black powder showed similar results, but the effect of the chamber method was slightly decreased when the green fluorescent powder was used. In order to improve the development with the green fluorescent powder, the mixture (50 : 50) of the fluorescent powder with the silica gel was tested and the results were similar to those of the brush method. It is expected that the chamber method has a high potential as a new powder application method considering the health of the crime scene investigator after fine tuning of development conditions with additional studies.

가습기 살균제 참사와 관련된 당시 생활화학물질 관리 법령에 대한 비판적 고찰 (Critical Review of the Former Korean Regulations for Consumer Chemicals and the Humidifier Disinfectant Disaster)

  • 조대환;조경이;박태현;최예용;박동욱
    • 한국환경보건학회지
    • /
    • 제48권3호
    • /
    • pp.183-194
    • /
    • 2022
  • Background: No study has examined the regulatory factors associated with fatal health problems due to the use of humidified disinfectants (HD) in South Korea. Objectives: This study aimed to identify and discuss the deficiencies and limitations found in the Toxic Chemical Control Acts (TCCA) that failed to prevent the health risk of chemicals in HD products. Methods: The South Korean TCCA was reviewed focusing on acts in operation from 1994 through the end of 2011, the period when HD was allowed in manufacturing and marketing. Results: The TCCA was the act intended to regulate the toxicity of chemicals in HD products. We found the TCCA to lack three key legal clauses which would have been essential to controlling the health risk of HD. First, there was the exemption of toxic and hazard testing for existing chemicals, including chloromethylisothiazolinone (CMIT), methylisothiazolinone (MIT), and benzalkonium chloride (BKC). Secondly, there were no articles requiring industry to provide animal inhalation test result for polymers such as polyhexamethylene guanidine (PHMG) and Oligo(2-)ethoxyethoxyethyl guanidine chloride (PGH). Finally, there was a lack of articles on examining the risk of products as well as on addressing changes in the usage of products. These articles were found to be generally provided in the US Toxic Substance Chemical Act (TSCA) and the EU Registration, Evaluation and Authorization of Chemicals (REACH). Conclusions: In conclusion, the Ministry of Environment of South Korea had not updated key articles for regulating hazardous chemicals, causing large-scale health problems due to HD which had been fundamentally addressed in chemical-related acts in other countries.