• Title/Summary/Keyword: ingestion exposure

Search Result 165, Processing Time 0.026 seconds

Health Risk Assessment of Lead Ingestion Exposure by Particle Sizes in Crumb Rubber on Artificial Turf Considering Bioavailability

  • Kim, Sun-Duk;Yang, Ji-Yeon;Kim, Ho-Hyun;Yeo, In-Young;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.5.1-5.10
    • /
    • 2012
  • Objectives: The purpose of this study was to assess the risk of ingestion exposure of lead by particle sizes of crumb rubber in artificial turf filling material with consideration of bioavailability. Methods: This study estimated the ingestion exposure by particle sizes (more than 250 um or less than 250 um) focusing on recyclable ethylene propylene diene monomer crumb rubber being used as artificial turf filling. Analysis on crumb rubber was conducted using body ingestion exposure estimate method in which total content test method, acid extraction method and digestion extraction method are reflected. Bioavailability which is a calibrating factor was reflected in ingestion exposure estimate method and applied in exposure assessment and risk assessment. Two methods using acid extraction and digestion extraction concentration were compared and evaluated. Results: As a result of the ingestion exposure of crumb rubber material, the average lead exposure amount to the digestion extraction result among crumb rubber was calculated to be $1.56{\times}10^{-4}$ mg/kg-day for low grade elementary school students and $4.87{\times}10^{-5}$ mg/kg-day for middle and high school students in 250 um or less particle size, and that to the acid extraction result was higher than the digestion extraction result. Results of digestion extraction and acid extraction showed that the hazard quotient was estimated by about over 2 times more in particle size of lower than 250 um than in higher than 250 um. There was a case of an elementary school student in which the hazard quotient exceeded 0.1. Conclusions: Results of this study confirm that the exposure of lead ingestion and risk level increases as the particle size of crumb rubber gets smaller.

Health Risk Assessment of Lead Exposure through Multi-pathways in Korea (납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로)

  • Chung, Yong;Hwang, Man-Sik;Yang, Ji-Yeon;Jo, Seong-Joon
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

The Effect of Sport Drink Ingestion on the Physical Fatigue Level and Heart Rate during Prolonged Exposure in Hot Ambient Temperature in Professional Golfers (장시간 고온 환경 노출시 수분의 섭취가 프로골프선수들의 신체피로도 및 심박수에 미치는 영향)

  • Kim Seung-Kon;Cho In-Ho;Park Soo-Yeon;Lee Jong-Sam
    • Journal of Nutrition and Health
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • We investigated the effects of prolonged exposure in hot environmental condition and ingestion of fluid on various physiological variables including plasma glucose, lactate, the rating of perceived exertion (RPE), and heart rate as well as golf putting performance. Six male professional golfers were voluntarily participated in three different putting trials which were separated by seven days of time interval period. Three different putting trials were conducted at either 20℃ or 32℃, or 32℃ + Fluid ingestion. Performing 32℃ + Fluid ingestion trial, all subject ingested sport drink as much as their body mass was decreased. For each experiment, all subjects were undertaken total 48 putting, which separated by four x 12 putting in four different time points (i.e., Rest, 1 hr, 2 hr, and 3 hr). Plasma glucose concentration was significantly decreased with hot ambient condition but it was almost fully recovered by fluid ingestion. Plasma lactate concentration was significantly higher when subjects were exposed in hot environmental condition, and it did not change with fluid ingestion. There was a no different in putting performance and psychological fatigue level (performed by GRID test) at any environmental conditions. The RPE, commonly used for evaluating of physical fatigue level, was significantly dropped by fluid ingestion which indicates lower physical fatigue level. In addition to this, heart rate (HR) was also significantly decreased after fluid ingestion. Based on these results, it was concluded that the ingestion of fluid during prolonged exposure in hot ambient condition decrease the degree of physical fatigue levels and heart rate, which will possibly improve the golf performance when exposed in extreme weather condition in summer. (Korean J Nutrition 38(2): 117~124, 2005)

Food Ingestion Factors of the Korean Exposure Factors Handbook

  • Jang, Jae-Yeon;Jo, Soo-Nam;Kim, Sun-Ja;Myung, Hyung-Nam;Kim, Cho-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • The purpose of this study was to establish food ingestion factors needed to assess exposure to contaminants through food ingestion. The study reclassified the raw data of the Korean National Health and Nutrition Examination Survey in 2001 into 12 subcategories including grain products, meat products, fish and shellfish, and vegetables for international comparability of exposure evaluation. The criteria for food intake calculation were unified according to the characteristics of food groups, and recommended values for food ingestion factors were calculated through moisture correction and recategorization of cooked, processed, and mixed foods for each group. The average intake rate for grain and grain products was 6.25 g/kg-d per capita and the men's intake rate was approximately 8% higher than that of the women. The average intake rate of meat and meat products was 1.62 g/kg-d per capita and the men's intake rate was 30% higher than that of the women, on average. The average intake rate of fish and shellfish was 1.53 g/kg-d per capita, and the age groups of 1 to 2 and 3 to 6 recorded higher capita intake rates than other age groups, 2.62 g/kg-d and 2.25 g/kg-d, respectively. The average intake rate of vegetables was 6.47 g/kg-d per capita, with the age group of 1 to 2 recording the highest per capita intake rate of 9.79 g/kg-d and that of 13 to 19 recording the lowest mean. The study also offers recommended values for food ingestion factors of other food groups by gender, age, and region. The food ingestion exposure factors will need future updates in consideration of ongoing changes in food consumption behavior.

Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant (원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Kim, Byung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.209-221
    • /
    • 1994
  • In the case of a severe accident of a nuclear power plant, the whole body dose and the relative importance of the radionuclides during the lifetime of an exposed person were estimated for each exposure pathway with distances from the release point. The external exposure pathways due to immersion of radioactive cloud and deposition of radioactive materials on the ground, and the internal exposure pathways due to inhalation and ingestion of contaminated foodstuffs were considered. The effects due to the ingestion of contaminated foodstuffs were estimated considering the variation of radioactive concentration in the foodstuffs according to deposition time and elapsed time after deposition using a dynamic ingestion pathway model applicable to Korean environment, named 'KORFOOD'. As the results up to 80 km from the release point, the effects due to ingestion of contaminated foodstuffs showed the highest contribution to total exposure dose. The contribution of I isotopes was the highest in the case of the external dose due to immersion of radioactive cloud and internal dose due to inhalation. The contribution of Cs isotopes was highest in the case of the external dose due to deposition of radioactive materials on the ground. In the case of the internal dose due to ingestion of contaminated foodstuffs, Cs deposition in summer and Sr deposition in winter, respectively, were the most dominant radionuclide to whole body.

  • PDF

Stabilization of fluorine in soil using calcium hydroxide and its potential human health risk

  • Jeong, Seulki;Kim, Doyoung;Yoon, Hye-On
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.654-661
    • /
    • 2019
  • This study assessed the stabilization of fluorine (F)-contaminated soil using calcium hydroxide (Ca(OH)2) and the consequent changes in human health risk. The bioavailable F decreased to 3.5%, (i.e., 57.9 ± 1.27 mg/kg in 6% Ca(OH)2-treated soil sample) from 43.0%, (i.e., 711 ± 23.4 mg/kg in control soil sample). This resulted from the conversion of water-soluble F to stable calcium fluoride, which was confirmed by XRD spectrometry. Soil ingestion, inhalation of fugitive dust from soil, and water ingestion were selected as exposure pathways for human health risk assessment. Non-carcinogenic risks of F in soils reduced to less than 1.0 after stabilization, ranging from 4.2 to 0.34 for child and from 3.0 to 0.25 for adult. Contaminated water ingestion owing to the leaching of F from soil to groundwater was considered as a major exposure pathway. The risks through soil ingestion and inhalation of fugitive dust from soil were insignificant both before and after stabilization, although F concentration exceeded the Korean soil regulatory level before stabilization. Our data suggested that substantial risk to human health owing to various potential exposure pathways could be addressed by managing F present in soil.

Changes in the Concentrations of the Tap Water Chlorination By-Products by Heating during Cooking, and Human Ingestion Exposure (조리시 가열에 따른 수돗물 중 염소소독부산물의 농도 변화와 인체 섭취 노출)

  • 김희갑;이수형
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.35-43
    • /
    • 1999
  • A number of disinfection by-products (DBPs) are formed as a result of the addition of chlorine into the public water supply and some of them have been suggested to cause adverse health effects on humans. However, the estimation of human ingestion exposure to each DBP has been performed simply by multiplying the concentration of a chemical in the cold tap water by the volume of water consumed during a given period of time. However, a questionnaire concerning water consumptions administered to sixty people residing in Chunchon showed that the volume of tap water consumed accounted for approximately 70% of the total volume of water consumed and that of heated water represented approximately 94% of tap water ingested. Heating durations for water-containing foods (e. g., soups and pot stews) and heated beverages (e. g., barley tea) were grouped into 10, 20, 30, and 35 minutes. Based on these time frames, an aluminum pot containing one liter of tap water was heated for the above respective time periods using a gas range to determine the variations of the concentrations of individual DBPs by heating. The pH and total residual chlorine were measured before and after heating. Collected water samples were carried to the laboratory and analyzed for eight DBPs and total organic carbon. Chloroform, bromodichloromethane, chloral hydrate, 1, 2-dichloro-2-propanone, 1, 1, 1-trichloropropanone, and dichloroacetonitrile were not detected following heating for 10 minutes and longer. The concentration of dichloroacetic acid (DCAA) was elevated with heating duration, resulting in the averages of 2.0, 3.1, 4.7, and 12 times the initial concentration, respectively, for 10, 20, 30, and 35 minute heating periods. On the other hand, the concentration of trichloroacetic acid (TCAA) decreased with heating duration, with 0.65, 0.40, 0.34, and 0.19 times lower than the initial concentration. Therefore, it is suggested that ingestion exposure to DCAA increases with heating duration but that ingestion exposure to TCAA decreases. In addition, while the amount of DCAA was elevated at the initial time periods (10 or 20 minutes) and then slowly decreased, that of TCAA was rapidly decreased. In conclusion, water-heating processes during cooking influence the concentrations of individual DBPs in the tap water, with lower levels for volatile DBPs and TCAA, and higher levels for DCAA. Therefore, concentration change needs to be taken into consideration in the estimation of human ingestion exposure to DBPs.

  • PDF

Effects of Input Variables in Radiological Accident Consequence Assessment

  • Han, Moon-Hee;Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Park, Young-Gil
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.659-664
    • /
    • 1998
  • The importance of input wariables of real-time accident consequence assessment model has been analyzed. Partial correlation coefficients of input variables related to the plume and the ingestion exposure have been estimated using latino hypercube sampling technique. It is known that wind speed and growth dilution rate are the most important variable in plume and ingestion exposure, respectively.

  • PDF

Inhalation and Dermal Exposures to Chloroform while Bathing (목욕시 Chloroform에 대한 흡기 및 피부 접촉 노출)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 1998
  • Recently, bathes have been suspected to an Important source of indoor exposure to volatile organic compounds(VOCs). Two experiments were conducted to evaluate chloroform exposure and corresponding body burden by exposure routes while bathing. Another experiment was conducted to ekamine the chloro- form dose during dermal exposure and the chloroform decay In breath after dermal exposure. The chioroform dose was determined based on exhaled breath analysis. The ekamine breath concentration measured after normal baths (2.8 Vg/$m^3$) was approxidmately 13 tomes higher that measured prior to normal bathes (0.2 ug/$m^3$). Based on the means of the normalized post exposure chloroform breath concentration. the dermal exposure was estimated to contribute to 74% of total chloroform body burden while bathing. The Internal dose from bathing (Inhalation plus dermal) was comparable to the dose ostimated Srom dally water Ingestion. The rusk associated 10 a weekly, 30-min bath was estimated to be 1 x 10.5, while the rusk firom dally Ingestion of tap water was to be $0.5{\times}0^{-5} for 0.151 and 6.5{\times}10^{-5}$ for 2. 0 1. Chloroform breath concentration Increased gradually during the 60 minute dermal exposure. The breath decay after the dermal exposure showed two-phase mechanism, with early raped decay and the second slow decay. The mathematical model was developed to describe the relationship between water and air chloroform concentrations, with $R^2$ : 0.4 and p<0.02.

  • PDF

Comparison of Household Trihalomethanes (THMs) Exposure Associated with Use of Municipal Tap Water Treated with Chlorine or Ozone-Chlorine (염소살균과 오존-염소살균 수도수의 사용과 관련한 가정 트리할로메탄 노출 비교평가)

  • Jo, Wan Geun;Gwon, Gi Dong;Dong, Jong In;Jeong, Yong
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.627-635
    • /
    • 2004
  • Evaluated were household THMs exposure associated with the use of municipal tap water treated with chlorine and with ozone-chlorine. The current study measured the THMs concentrations in the tap water and indoor and outdoor air in the two types of household, along with an estimation of THMs exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THMs in all three media, yet no bromoform was detected in any sample. Contrary to previous findings, the fall water THMs concentrations exhibited no significant difference between the chlorine and ozone-chlorine treated water. However, the spring median chloroform concentration in the tap water treated with chlorine (17.6 ppb) was 1.3 times higher than that in the tap water treated with ozone-chlorine (13.4 ppb). It is suggested that the effects of the water parameters should be considered when evaluating the advantage of ozone-chlorine disinfection for THMs formation over chlorine disinfection. The indoor air THMs concentration trend was also consistent with the water concentration trend, yet the outdoor air THMs concentrations did not differ significantly between the two types of household. The indoor to outdoor air concentration ratios were comparable with previous studies. The THMs exposure estimates from water ingestion, showering, and the inhalation of indoor air suggested that, for the residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water use, rather than the indoor air. The THMs exposure estimates from tap water ingestion were similar to those from showering.