• Title/Summary/Keyword: infrared thermal measurement

Search Result 140, Processing Time 0.028 seconds

A Study of Evaluation Technology for Heating Channel Layout in SMC Molds (SMC 금형의 가열채널레이아웃 평가기술에 관한 연구)

  • 이성희;고영배;이종훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.580-584
    • /
    • 2004
  • In the present study, an evaluation technology for heating channel layout was investigated in SMC molding system design. Conventional design rules of cooling channel in injection molding process were applied to the present work. Finite element thermal analysis with ANSYSTM was performed to evaluate the temperature distribution of mold surface. SMC mold was manufactured to test the effect of a proposed heating channel layout system on the temperature distribution of mold surface and infrared camera was applied to a measurement of temperature. It was shown that infrared camera application was possible in a measurement of temperature distribution on mold surface.

  • PDF

Beating Channel Layout Design and Evaluation Technology for SMC Molds (Sheet Molding Compound 금형의 가열채널설계 및 평가기술)

  • Heo Y. M.;Ko Y. B.;Lee J. H.;Lee S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.263-268
    • /
    • 2005
  • Heating channel layout design and evaluation technology for SMC molding system was investigated in this work. Traditional rules of cooling channel design in injection molding were applied to the present work. Finite element thermal analysis with $ANSYS^{TM}$ was performed to evaluate the temperature distribution of SHC mold surface. SMC mold was manufactured to evaluate the effect of a proposed heating channel layout system on the temperature distribution of SMC mold surface and infrared camera was applied to a measurement of temperature distribution. It was shown that infrared camera application was possible in a measurement of temperature distribution on SHC mold surface.

DEVELOPMENT OF QUALITY EVALUATION SYSTEM FOR PEANUT WITH POD USING OPTICAL METHODS

  • Morta, Kazuo;Taharazako, Shoji;Zhang, Han;Maekaji, Kenji;Ikeda, Hirohiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1354-1363
    • /
    • 1993
  • Optical methods were developed to examine their feasibility for quality evaluation of peanut with pod. Surface color and internal quality of peanut were measured without contact. The surface color of peanut was measured by light reflectance at a region of visible wavelengths. Its characteristic was high correlated with a visual grading of peanut. A trial machine for the color grading of peanut was developed using an optical sensor and it was considered to compare with the visual grading. The spectral reflectance at a region of near infrared wavelengths from 1,200 to 2,500nm was measured , and the chemical components of peanut were related to spectral reflectance at special wavelengths. The protein, fat and moisture contents of peanut were estimated by the near infrared methods. An infrared imaging method was developed to evaluate the internal quality of peanut with pod. As thermal characteristic of peanut with pod was deeply related to internal quality , the quality of peanut can be evaluated by temperature changes on the surface of peanut. Measurement of surface color, near infrared reflectance and thermal imaging were shown to be very effective in grading of peanut with pod.

  • PDF

Analysis of Thermal Distribution inside LCD Monitor by Development of Prediction Formula for Inner Temperature (내부 온도 추정식 개발에 의한 LCD 모니터 내부의 열분포 분석)

  • Oh, S.J.;Ko, H.S.;Chung, D.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.487-488
    • /
    • 2006
  • In these days, demand of a LCD monitor is remarkably increasing with development of the LCD technology. However, there are thermal problems for improvement of efficiency for the LCD monitor. Thus, this research analyzed thermal problems such as convection and conduction heat transfer characteristics in the LCD monitor using an infrared (IR) camera. Also, the results of the outer side of the front LCD panel using the IR camera have been compared with the results of the inner side of the front panel using T-type thermocouples. The equations have been derived for the temperature distribution of the inner side of the front LCD panel by a multiple regression method including variables for ambient temperature, humidity and temperature differences between the front and back panels of the LCD monitor.

  • PDF

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

Standardization of Temperature Measurement System for Stable and Reliable Infrared Thermographical Image (열화상 이미지의 신뢰성 확보를 위한 온도입력시스템의 표준화)

  • Yoon, Se-Hyun;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • This study presents a technique to quantitatively measure the corrosion level of a reinforcing bar using infrared thermography system. We found out electric heating method having an important effect on thermal data in previous study. This study purposed an efficient way for grip standardization to reduce constriction resistance problem, and providing reliable thermal data using infrared thermographic method. Using vise type earth clamp, the surface resistance of rebar was smaller than that of traditional plier type earth clamp through temperature-distribution relationship. Also this study contains experiments with toque wrench to improve heating contact problem.

A Study of Analgesic Effect of Twirling Acupuncture on Pain Model of the Formalin Test Using the Infrared Thermal Image Processing (적외선 영상 처리를 통한 Formalin Test 통증 모델에서의 염전 침자극 효과에 대한 연구)

  • Ryu, Jae-kwan;Lee, Soon-geul;Rhim, Sung-soo;Lee, Jae-dong;Min, Byung-il;Ryu, Un-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.223-233
    • /
    • 2004
  • Objective: As a manual accupucture method, the twirling-needle treatment has been known more effective in relieving pain than the conventional simple accupuncture treatment. Finding a proper treatment condition is difficult because of the lack of a quantative measurement of the alleviation of pain made by acupuncture. In this research, the authors propose the use of infrared thermal images in a formalin test to quantatively verify the effect of twirling. Methods: After injecting 10%~20% formalin into the tail of rats, the infrared thermal images(ITI) have been obtained to estimate the thermal distribution caused by inflammation. The authors propose a processing method to measure the thermal distribution from the thermal images obtained from the infrared camera as a pain model of the formalin test. Results: The pain model obtained from the infrared thermal image has two phases. The first phase, which is a transient period, is the initial 20 minutes when the pain is developed after the formalin injection. The second phase, which is a steady state, is where the development of pain lasts for 60 minutes or more after the first stage. This characteristic of the proposed model based on ITI is consistent with that of the pain model reported by other researchers whose works are based on the time-course of flinching and licking/biting, following a different concentration of formalin. It is noticed that the response of the thermal distribution obtained from ITI shows very high correlation to the behavioral response in the formalin test performed by Kazuhiro Okuda and four others5). In addition, the authors propose an ITI method to determine the pain-reducing effect of the acupuncture. The thermal distribution obtained from the experiment shows that there is significant pain reducing effect made by the twirling-needle method.

  • PDF

Reliability Evaluation System of Hot Plate for PR Baking (Hot Plate 신뢰성 시험.평가장비 개발)

  • 송준엽;송창규;노승국;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.566-569
    • /
    • 2001
  • Hot Plate is the major unit that it used to remove damp of wafer surface, to strength adhesion of photoresist(PR) and to bake coated PR in FAB process of semiconductor. It is necessary to guarantee the performance of Hot Plate(HP). Therefore, in this study designed and developed the reliability system of HP to measure and estimated thermal uniformity and flatness in temperature setting amplitude $0~250^{\circ}C$. We developed the techniques that measures and analyzes thermal uniformity using infrared thermal vision, and compensates measuring error of flatness using laser displacement sensor. For measuring flatness, we specially makes the measurement stage of 3 axes which adopts the precision encoder. The allowable error of measuring technique is less than thermal uniformity, $\pm 0.1^{\circ}C$ and flatness, $\pm 1mm$. It is expected that the developed system can measure from $\Phi$210(wafer 8") to $\Phi$356(wafer 12") and also can be used in performance test of the Cool Plate and industrial heater, etc.

  • PDF