• Title/Summary/Keyword: infrared telescope

Search Result 262, Processing Time 0.026 seconds

BLACK HOLE MASS MEASUREMENTS WITH REST-FRAME OPTICAL QUASAR SPECTRA AT 3

  • Jun, Hyunsung David;Im, Myungshin;Lee, Hyung Mok;AKARI QSONG team, AKARI QSONG team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.361-362
    • /
    • 2012
  • We summarize the progress on the rest-frame optical spectroscopy of quasars at 3$2.5-5{\mu}m$. This spectral window has been utilized for detecting redshifted $H{\alpha}$ emission lines of our high redshift subsample of quasars. From the calculated emission line widths and luminosities we measured supermassive black hole masses using well calibrated optical mass estimators. Science topics regarding optical based black hole masses at high-z are discussed.

Wide-orbit companion candidates and Stellar Disk around T-Tauri Star

  • Oh, Daehyun;Tamura, Motohide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.86.1-86.1
    • /
    • 2014
  • Two substellar companion candidates with planetary mass, around a T-Tauri star in the ${\rho}$ Ophiuchi star-forming region, are discovered by results of Subaru Telescope's near-infrared imaging. Candidates are separated by 1400au and 500au. If these candidates were real companions, they are the widest-orbit and the lowest mass planetary-mass companions(PMCs) candidates. This discovery may suggest that PMCs form via extreme case of cloud core fragmentation for multiple stars. And also stellar disk are imaged by HiCIAO, hight contrast instrument for exoplanets and disks, with Subaru Telescope. This could be the first case, which imaged both of planetary mass companions and disk around same star. Even two companions candidates are not bounded around the star, they still could be one of the lowest mass objects. In this presentation, I will discuss about observations and confirmations of these objects, and the latest results about their properties.

  • PDF

Gemini Observations of Planetary Nebula Candidates toward the Galactic Center

  • Hong, Jihye;An, Deokkeun;Simpson, Janet P.;Sellgren, Kris;Ramirez, Solange V.;Cotera, Angela S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2018
  • We present high-resolution near infrared (IR) spectra of two candidate planetary nebulae (PNe) that were serendipitously found toward the Galactic center (GC). Our spectra obtained using GNIRS on Gemini North reveal strong Br ♑ and He I recombination lines. In one of the targets, we confidently detect Pa ♌ emission. Based on Br ♑ and Pa ♌ lines, we estimate a foreground reddening to be Av=27 mag, which confidently puts this object at the GC distance. Along with the presence of highly excited emission lines such as [S IV], [Ne III], [Ne V], and [O IV] detected in the mid-IR spectra from the Spitzer Space Telescope, and the extended emission in the Pa ♋ narrow-band image from the Hubble Space Telescope, this makes it the first spectroscopically confirmed PN in the GC.

  • PDF

Intracluster Light Study of the Distant Galaxy Cluster SPT2106-5844 at z=1.132 with Hubble Space Telescope Infrared Imaging Data

  • Joo, Hyungjin;Jee, Myungkook James;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • Intracluster stars are believed to be gravitationally bound to a galaxy cluster, however, not to individual cluster galaxies. Their presence is observed as diffuse light typically in the central region extended from the brightest cluster galaxy. The diffuse light, often referred to as intracluster light (ICL), is difficult to quantify in distant high-redshift galaxy clusters because of the significant surface brightness dimming although ICL observations in high-redshift clusters provide powerful constraints on the origin of intracluster stars. In this poster, we present ICL study of the distant galaxy cluster SPT2106-5844 at z=1.132 with Hubble Space Telescope IR imaging data. With careful control of systematics, we successfully quantify the total amount of the ICL, measure the color profile, and obtain its two-dimensional distribution. Our measurement of the high abundance of the intracluster stars in this young cluster favors the ICL formation scenario, wherein production of intracluster stars are predominantly associated with the BCG formation.

  • PDF

FIRST NEAR-INFRARED CIRCULAR POLARIZATION SURVEY

  • Kwon, Jungmi;Tamura, Motohide;Hough, James H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2016
  • Polarimetry is an important tool for studying the physical processes in the interstellar medium, including star-forming regions. Polarimetry of young stellar objects and their circumstellar structures provides invaluable information about distributions of matter and configurations of magnetic fields in their environments. However, only a few near-infrared circular polarization (CP) observations were reported so far (before our survey). A systematic near-infrared CP survey has been firstly conducted in various star-forming regions, covering high-mass, intermediate-mass, and low-mass young stellar objects. All the observations were made using the SIRPOL imaging polarimeter on the Infrared Survey Facility (IRSF) 1.4 m telescope at the South African Astronomical Observatory (SAAO). In this presentation, we present the first CP survey results. The polarization patterns, extents, and maximum degrees of circular and linear polarizations are used to determine the prevalence and origin of CP in the star-forming regions. Our results are explained with a combination of circumstellar scattering and dichroic extinction mechanism generating the high degrees of CP in star-forming regions. The universality of the large and extended CPs in star-formaing regions can also be linked with the origin of homochirality of life.

  • PDF

Near-infrared Polarimetric Study of N159/N160 Star Forming Regions in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pak, Soojong;Pyo, Jeonghyun;Tamura, Motohide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2016
  • We observed two star forming regions, N159 and N160, in the Large Magellanic Cloud with SIRPOL, the polarimeter of the Infrared Survey Facility (IRSF) in South Africa. The photometric and polarimetric observations are done in three near-infrared bands, J, H, and Ks. We measured Stokes parameters of point sources and calculated their degrees of polarization and polarization angles. The polarization vector map shows complex features associated with dust and gas structures. Overall features of the magnetic field in N159 and N160 regions are different from each other and appear to be related to local environments, such as interior and boundary of shell structure, existence of star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the relation between the structure of magnetic field and the local properties of dust and gas in N159 and N160 regions by comparing our polarization vector map with images of $H{\alpha}$, mid-infrared, and $^{12}CO$ emissions, respectively by WFI of MPG/ESO telescope, Spitzer IRAC, and NANTEN.

  • PDF

COSMIC STAR FORMATION HISTORY AND AGN EVOLUTION NEAR AND FAR: AKARI REVEALS BOTH

  • Goto, Tomotsugu;AKARI NEP team, AKARI NEP team;AKARI all sky survey team, AKARI all sky survey team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.347-352
    • /
    • 2012
  • Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and $160{\mu}m$) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe $8{\mu}m$, $12{\mu}m$, and total infrared (TIR) luminosity functions (LFs) at 0.15 < z < 2.2 using 4,128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and $24{\mu}m$) by the AKARI satellite allows us to estimate restframe $8{\mu}m$ and $12{\mu}m$ luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z = 0 to z = 2.2, all probed by the AKARI satellite.

Developments of the Wide Wavelength Range Polarimeter of the Domeless Solar Telescope at the Hida Observatory

  • Anan, Tetsu;Ichimoto, Kiyoshi;Oi, Akihito;Ueno, Satoru;Kimura, Goichi;Nakatani, Yoshikazu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • We are developing a new universal spectropolarimeter on the Domeless Solar Telescope (DST) at the Hida Observatory to realize precise spectropolarimetric observations in a wide range of wavelength in visible and near infrared. The system aims to open a new window of plasma diagnostics by using Zeeman effect, Hanle effect, Stark effect, impact polarization, and atomic polarization for measuring the external magnetic field, electric field, or an anisotropy in the excitation of the atoms. The polarimeter is a successor of formerly developed polarimeter on DST, which make possible to observe a polarization in a photospheric spectral line with polarimetric accuracy of 10-2 (Kiyohara et al. 2004). The new system consists of a 60cm aperture vacuum telescope, a high dispersion vacuum spectrograph, polarization modulator / analyzer composed of a rotating waveplate whose retardation is constant for a wide range of wavelength and Wallaston prism, and a fast and large format CCD camera or IR camera. Spectral images in both orthogonal polarizations are taken simultaneously with a frame rate of ~20Hz while the waveplate rotates continuously in a rate of 1rev./sec. Thus It takes 5 ~ 60 sec to observe polarization with accuracy of 10-3 in a wide wavelength range (400 - 1100nm). We also examined a polarimetric model of the telescope with accuracy of 10-3 to calibrate instrumental polarization on some wavelengths. In this talk, I will focus on the performance of the instrument.

  • PDF

ACTIVITY OF IRSF FOR 14 YEARS

  • SATO, SHUJI;NAGAYAMA, TAKAHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.663-664
    • /
    • 2015
  • The activities of IRSF, a 1.4m infrared telescope operated under collaboration between Japan and South Africa, are presented briefly. The dedicated instrument, SIRIUS, which sits at the Cassegrain, has produced unique and prosperous science for 14 years. My talk involves; ${\circ}$ concept of construction and operation, ${\circ}$ publications and education, ${\circ}$ the successive upgrading of the instrument, and ${\circ}$ future plans.

The circumstellar disk and wide-orbit companion candidates arund T-Tauri Star

  • Oh, Daehyun;Tamura, Motohide;Wako, Aoki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.71.1-71.1
    • /
    • 2015
  • We prensent the near-infrared(NIR) images of the asymmetric circumstellar disk around a T-Tauri star in the ${\rho}$ Ophiuchi star-forming region, and two faint stellar objects around central star. These results were obtainted with the Subaru Telescope with HiCIAO(the High-Contrast Instrument with Adaptive Optics) and IRCS(the InfraRed Camera and Spectrograph). The disk shows center-offset from the star and a strong morphological asymmetry along both the major and minor axis. The physical conditions in the disk is derived from the infrared visibilites results and the complete spectral energy distribution using HOCHUNK3D, Monte-Carlo radiative transfer code. Two companion candidates are separated by 11.6 arcsec(~1450 au at 125 parsec) and 4.34 arcsec(~540 au at 125 parsec). This could be the first case, which imaged both of planetary mass companions and disk around same star. We discuss physical structures of the disk, and probablity that two candidates are real companions.

  • PDF