• Title/Summary/Keyword: infrared spectra

Search Result 855, Processing Time 0.021 seconds

The study of quantitative analytical method for pH and moisture of Hanji record paper using non-destructive FT-NIR spectroscopy (비파괴 분석 방법인 푸리에 변환 근적외선 분광 분석을 이용한 한지 기록물의 산성도 및 함수율 정량 분석 연구)

  • Shin, Yong-Min;Park, Soung-Be;Lee, Chang-Yong;Kim, Chan-Bong;Lee, Seong-Uk;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • It is essential to evaluate the quality of Hanji record paper without damaging the record paper by previous destructive methods. The samples were Hanji record paper produced in the 1900s. Near-infrared (NIR) spectrometer was used as a non destructive method for evaluating the quality of record papers. Fourier transform (FT) spectrometer was used with 12,500 to 4,000 $cm^{-1}$ wavenumber range for quantitative analysis and it has high accuracy and good signal-to-noise ratio. The acidity and moisture content of Hanji record paper were measured by integrating sphere as diffuse reflectance type. The acidity (pH) of chemical factors as a quality evaluated factor of Hanji was correlated to NIR spectrum. The NIR spectrum was pretreated to obtain the coefficients of optimum correlation. Multiplicative scatter correction (MSC) and First derivative of Savitzky-Golay were used as pretreated methods. The coefficients of optimum correlation were calculated by PLSR (partial least square regression). The correlation coefficients ($R^2$) of acidity had 0.92 on NIR spectra without pretreatment. Also the standard error of prediction (SEP) of pH was 0.24. And then the NIR spectra with pretreatment would have better correlation coefficient ($R^2$ = 0.98) and 0.19 as SEP on pH. For moisture contents, the linearity correlation without pretreatment was higher than the case with pretreatment (MSC, $1^{st}$ derivative). As the best result, the $R^2$ was 0.99 and SEP was 0.45. This indicates that it is highly proper to evaluate the quality of Hanji record papers speedily with integrated sphere and FT NIR analyzer as a non-destructive method.

Development of Measuring Technique for Milk Composition by Using Visible-Near Infrared Spectroscopy (가시광선-근적외선 분광법을 이용한 유성분 측정 기술 개발)

  • Choi, Chang-Hyun;Yun, Hyun-Woong;Kim, Yong-Joo
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2012
  • The objective of this study was to develop models for the predict of the milk properties (fat, protein, SNF, lactose, MUN) of unhomogenized milk using the visible and near-infrared (NIR) spectroscopic technique. A total of 180 milk samples were collected from dairy farms. To determine optimal measurement temperature, the temperatures of the milk samples were kept at three levels ($5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$). A spectrophotometer was used to measure the reflectance spectra of the milk samples. Multilinear-regression (MLR) models with stepwise method were developed for the selection of the optimal wavelength. The preprocessing methods were used to minimize the spectroscopic noise, and the partial-least-square (PLS) models were developed to prediction of the milk properties of the unhomogenized milk. The PLS results showed that there was a good correlation between the predicted and measured milk properties of the samples at $40^{\circ}C$ and at 400~2,500 nm. The optimal-wavelength range of fat and protein were 1,600~1,800 nm, and normalization improved the prediction performance. The SNF and lactose were optimized at 1,600~1,900 nm, and the MUN at 600~800 nm. The best preprocessing method for SNF, lactose, and MUN turned out to be smoothing, MSC, and second derivative. The Correlation coefficients between the predicted and measured fat, protein, SNF, lactose, and MUN were 0.98, 0.90, 0.82, 0.75, and 0.61, respectively. The study results indicate that the models can be used to assess milk quality.

Rapid metabolic discrimination between Zoysia japonica and Zoysia sinica based on multivariate analysis of FT-IR spectroscopy (FT-IR스펙트럼 데이터의 다변량통계분석 기반 들잔디와 갯잔디의 대사체 수준 신속 식별 체계)

  • Yang, Dae-Hwa;Ahn, Myung Suk;Jeong, Ok-Cheol;Song, In-Ja;Ko, Suk-Min;Jeon, Ye-In;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Kim, Suk Weon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.213-222
    • /
    • 2016
  • This study aims to establish a system for the rapid discrimination of Zoysia species using metabolite fingerprinting of FT-IR spectroscopy combined with multivariate analysis. Whole cell extracts from leaves of 19 identified Zoysia japonica, 6 identified Zoysia sinica, and 38 different unidentified Zoysia species were subjected to Fourier transform infrared spectroscopy (FT-IR). PCA (principle component analysis) and PLS-DA (partial least square discriminant analysis) from FT-IR spectral data successfully divided the 25 identified turf grasses into two groups, representing good agreement with species identification using molecular markers. PC (principal component) loading values show that the $1,100{\sim}950cm^{-1}$ region of the FT-IR spectra are important for the discrimination of Zoysia species. A dendrogram based on hierarchical clustering analysis (HCA) from the PCA and PLS-DA data of turf grasses showed that turf grass samples were divided into Zoysia japonica and Zoysia sinica in a species-dependent manner. PCA and PLS-DA from FT-IR spectral data of Zoysia species identified and unidentified by molecular markers successfully divided the 49 turf grasses into Z. japonica and Z. sinica. In particular, PLS-DA and the HCA dendrogram could mostly discriminate the 47 Z. japonica grasses into two groups depending on their origins (mountainous areas and island area). Considering these results, we suggest that FT-IR fingerprinting combined with multivariate analysis could be applied to discriminate between Zoysia species as well as their geographical origins of various Zoysia species.

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Quantification of Protein and Amylose Contents by Near Infrared Reflectance Spectroscopy in Aroma Rice (근적외선 분광분석법을 이용한 향미벼의 아밀로스 및 단백질 정량분석)

  • Kim, Jeong-Soon;Song, Mi-Hee;Choi, Jae-Eul;Lee, Hee-Bong;Ahn, Sang-Nag
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.603-610
    • /
    • 2008
  • The principal objective of current study was to evaluate the potential of near infrared reflectance spectroscopy (NIRS) as a non-destructive method for the prediction of the amylose and protein contents of un-hulled and brown rice in broad-based calibration models. The average amylose and protein content of 75 rice accessions were 20.3% and 7.1%, respectively. Additionally, the range of amylose and protein content were 16.6-24.5% and 3.8-9.3%, respectively. In total, 79 rice germplasms representing a wide range of chemical characteristics, variable physical properties, and origins were scanned via NIRS for calibration and validation equations. The un-hulled and brown rice samples evidenced distinctly different patterns in a wavelength range from 1,440 nm to 2,400 nm in the original NIR spectra. The optimal performance calibration model could be obtained by MPLS (modified partial least squares) using the first derivative method (1:4:4:1) for un-hulled rice and the second derivative method (2:4:4:1) for brown rice. The correlation coefficients $(r^2)$ and standard error of calibration (SEC) of protein and amylose contents for the un-hulled rice were 0.86, 2.48, and 0.84, 1.13, respectively. The $r^2$ and SEC of protein and amylose content for brown rice were 0.95, 1.09 and 0.94, 0.42, respectively. The results of this study suggest that the NIRS technique could be utilized as a routine procedure for the quantification of protein and amylose contents in large accessions of un-hulled rice germplasms.

Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석)

  • Kim, Jeong-Soon;Cho, Yang-Hee;Gwag, Jae-Gyun;Ma, Kyung-Ho;Choi, Yu-Mi;Kim, Jung-Bong;Lee, Jeong-Heui;Kim, Tae-San;Cho, Jong-Ku;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.

Development of Prediction Model for Capsaicinoids Content in Red-Pepper Powder Using Near-Infrared Spectroscopy - Particle Size Effect (근적외선 스펙트럼을 이용한 고춧가루의 캡사이신 함량 예측 모델 개발 - 입자의 영향)

  • Mo, Changyeun;Kang, Sukwon;Lee, Kangjin;Lim, Jong-Guk;Cho, Byoung-Kwan;Lee, Hyun-Dong
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • In this research, the near-infrared absorption from 1,100-2,300 nm was used to measure the content of capsaicinoids in the red-pepper powder by using the Acousto-optic tunable filters (AOTF) spectrometer with sample plate and sample rotating unit. Non-spicy red-pepper samples from one location (Younggwang-gun. Korea) were mixed with spicy one (var. Chungyang) to make samples separated by particle size (below 0.425 mm, 0.425-0.71 mm, and 0.71- 1.4 mm). The Partial Least Squares Regression (PLSR) model to predict the capsaicinoid content on particle sizes was developed with measured spectra by AOTF spectrometer and used to analyze the amount of capsaicinoids by HPLC. The PLSR Model of red-pepper powder of below 0.425 mm, 0.425-0.71 mm, and 0.71-1.4 mm with cross validation had ${R_V}^2$ = 0.948-0.979 and Standard Error of Prediction (SEP) = 6.56-7.94 mg%. The prediction error of smaller particle size of red-pepper powder was low. The best PLSR model was found in pretreatment of Range Normalization, Standard Normal Variate, and 1st Derivatives of red-pepper powder of below 1.4 mm with cross validation, having ${R_V}^2$ = 0.959 and SEP = 8.82 mg%.

Basic Study on the Development of Analytical Instrument for Liquid Pig Manure Component Using Near Infra-Red Spectroscopy (근적외선 분광법을 이용한 돈분뇨 액비 성분분석기 개발을 위한 기초 연구)

  • Choi, D.Y.;Kwag, J.H.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Song, J.I.;Yoo, Y.H.;Chung, M.S.;Yang, C.B.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 2007
  • This study was conducted to measure Nitrogen(N), Phosphate($P_2O_5$), Potassium ($K_2O$), Organic matter(OM) and Moisture content of liquid pig manure by Near Infrared Spectroscopy(NIRS) and to develop an alternative and analytical instrument which are used for measurement of N, $P_2O_5$, $K_2O$, OM, and Moisture contents for liquid pig manure. The liquid pig manure sample's transmittance spectra were measured with a NIRS in the wavelength range of 400 to 2,500 nm. Multiple linear regression and partial least square regression were used for calibrations. The correlation coefficient(RSQ) and standard error of calibration(SEC) obtained for nitrogen were 0.9190 and 2.1649, respectively. The RSQ for phosphate, potassium, organic matter and moisture contents were 0.9749, 0.5046, 0.9883 and 0.9777, and the SEC were 0.5019, 1.9252, 0.1180 and 0.0789, respectively. These results are indications of the rapid determination of components of liquid pig manure through the NIR analysis. The simple analytical instrument for liquid pig manure consisted of a tungsten halogen lamp for light source, a sample holder, a quartz cell, a SM 301 spectrometer for spectrum analyzer, a power supply, an electronics, a computer and a software. Results showed that the simple analytical instrument that was developed can approximately predict the phosphate, organic matter and moisture content of the liquid pig manure when compared to the analysis taken by NIRS. The low predictability value of potassium however, needs further investigation. Generally, the experiment proved that the simple analytical instrument was reliable, feasible and practical for analyzing liquid pig manure.

  • PDF

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

A Study on the Identification of Animal Hair in Food (식품 중 동물 털 이물의 판별법 연구)

  • Lee, Jae-Hwang;Park, Young-Eun;Lim, Byung-Chul;Kim, Ju-Shin;Choi, Jong-Hyun;Kang, Tae Sun;Lee, Jin-Ha;Kwon, Kisung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • Foreign materials with a variety of types and sizes are found in food; thus, extraordinary efforts and various analytical methods are required to identify the types of foreign materials and to find out accurate causes of how they unintentionally enter food. In this study, human, cow, pig, mouse, duck, goose, dog, and cat were chosen as various types of animal hairs because they can be frequently incorporated into food during its production or consumption step. We morphologically analyzed them using stereoscopic, optical, SUMP method, and scanning electron microscopes, showing differences in each type. In addition, X-ray fluorescence spectrometer (XRF) was used to analysis chemical compositions ($^{11}Na{\sim}^{92}U$, Mass%) of samples. As a result, we observed that mammalian hairs were mainly composed of sulfur. Organic compounds of samples were further analyzed by fourier transform infrared spectroscopy (FT-IR) that can compare spectra of given materials; however, this method did not show significant differences in each sample. In this study, we suggest a rapid method for the identification of the causes and types of foreign materials in food.