• Title/Summary/Keyword: infrared sensors

Search Result 433, Processing Time 0.028 seconds

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors (수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정)

  • Lee, Kwon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

Energy Saving System using Occupancy Sensors and Smart Plugs (재실감지 센서와 스마트 플러그를 이용한 에너지 절약 시스템)

  • Jung, Kyung Kwon;Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.161-167
    • /
    • 2015
  • This paper presented an occupancy-based energy saving system for appliance energy saving in smart house. The developed system is composed of a sensing system and a home gateway system. The sensing system is set of wireless sensor nodes which have pyroelectric infrared (PIR) sensor to detect a motion of human and set of smart plugs which measure the current using CT (current transformer) sensor and send the current to home gateway wirelessly. We measured current consumption of appliances in real time using smart plugs, and checked the occupation of residents using occupancy sensors installed on the door and room. The proposed system saves electric energy to switch off the supply power of unnecessary usages in the unoccupied spaces. Experiments conducted have shown that electric energy usage of appliances can be saved about 34% checked by using occupation.

Intelligent Digital Public Address System using Agent Based on Network

  • Kim, Jung-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • In this paper, we developed a digital and integrated PA(Public Address) system with speech recognition and sensor connection based on IP with an ID using agent. It has facilities such as an external input, a microphone and a radio for a PA system and has speech recognition. If "fire" is spoken to the PA system then it can recognize the emergency situation and will broadcast information to the appropriate agency immediately. In addition to that, many sensors, such as temperature, humidity, and infrared, etc., can be connected to the PA system and can be integrated with the context awareness which contains many types of information about internal statuses using inference agent. Also, developed the digital integrated PA system will make it possible to broadcast the message to adaptable places using network IP based on IDs. Finally, the digital PA system is designed for operation from a PC, which makes installation and setting of operating parameters very simple and user-friendly. For implementation details, we implemented thread based concurrent processing for the events which occur concurrently from many sensors or users.

A Study on Occupancy Estimation Method of a Private Room Using IoT Sensor Data Based Decision Tree Algorithm (IoT 센서 데이터를 이용한 단위실의 재실추정을 위한 Decision Tree 알고리즘 성능분석)

  • Kim, Seok-Ho;Seo, Dong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.23-33
    • /
    • 2017
  • Accurate prediction of stochastic behavior of occupants is a well known problem for improving prediction performance of building energy use. Many researchers have been tried various sensors that have information on the status of occupant such as $CO_2$ sensor, infrared motion detector, RFID etc. to predict occupants, while others have been developed some algorithm to find occupancy probability with those sensors or some indirect monitoring data such as energy consumption in spaces. In this research, various sensor data and energy consumption data are utilized for decision tree algorithms (C4.5 & CART) for estimation of sub-hourly occupancy status. Although the experiment is limited by space (private room) and period (cooling season), the prediction result shows good agreement of above 95% accuracy when energy consumption data are used instead of measured $CO_2$ value. This result indicates potential of IoT data for awareness of indoor environmental status.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Survey of Electro-Optical Infrared Sensor for UAV

  • Jang, Seung-Won;Kim, Joong-Wook
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.124-134
    • /
    • 2008
  • The rising demand for the high efficiency and high covertness in UAV motivates the miniature design of the high performing mission sensors, or payloads. One of the promising payload sensors, EO/IR sensor has evolved satisfying its demands and became the main stand-alone mission sensor for 200kg-range UAV. One aspect in development of EO/IR sensor concerns lack of specification criterions to represent its performance. Even though the high demand and competition among each manufacturer caused EO/IR features subject to rapid change collateral to new technology, the datasheets maintained the conventional outdated formats which leave some of the major components in ambiguity. Making comparisons or predicting actual performance with such datasheets is hardly worthwhile; yet, they could be important reference guide for the potential customers what to expect for the upcoming EO/IR. According to UAS Roadmap 2007-2032 published by DoD, one of the main potential customers as well as a main investor of EO/IR technology, EO/IR is expected to play key roll in solving urgent problems, such as see and avoid system. This paper will examine the recent representative EO/IR specialized in UAS missions through datasheets to find out current trend and eventually extrapolate the possible future trend.

  • PDF

A Genetic Algorithm to Solve the Optimum Location Problem for Surveillance Sensors

  • Kim, NamHoon;Kim, Sang-Pil;Kim, Mi-Kyeong;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.547-557
    • /
    • 2016
  • Due to threats caused by social disasters, operating surveillance devices are essential for social safety. CCTV, infrared cameras and other surveillance equipment are used to observe threats. This research proposes a method for searching for the optimum location of surveillance sensors. A GA (Genetic Algorithm) was used, since this algorithm is one of the most reasonable and efficient methods for solving complex non-linear problems. The sensor specifications, a DEM (Digital Elevation Model) and VITD (Vector Product Interim Terrain Data) maps were used for input data. We designed a chromosome using the sensor pixel location, and used elitism selection and uniform crossover for searching final solution. A fitness function was derived by the number of detected pixels on the borderline and the sum of the detection probability in the surveillance zone. The results of a 5-sensor and a 10-sensor were compared and analyzed.

Automatic Guided Vehicle Design and Implementation for Intelligent Unmanned Mobile systems (지능형 무인 이동 시스템을 위한 Automatic Guided Vehicle 설계 및 구현)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • In this study, the unmanned vehicle to develop a preliminary step, we were facilities for Automated Guided Vehicle (AGV) simulator is designed and implemented. Industry is increasingly the more advanced automation and management systems need to be efficient. These studies are at least 24-hour continuous unmanned vehicles and personnel can result in reduction of labor costs. In addition, safety accidents can be minimized in the industry as an effect of intelligent AGV is essential. This study is the initial step for the development of AGV. manufactured simulator to Simulation and drives the performance of the system is evaluated. The configuration of the simulator, ultrasonic sensors, infrared sensors, and using the obstacle were to follow a given path. In addition, two-way communication between the host computer and the main processor that was. communication method that IEE802.11 meets the standard is applied to high-speed wireless LAN systems, each of the sensor information is calculated. AGV having a drive shaft 4 of the four wheels are respectively independent structure. AGV's main processor is driven using a high-performance DSP, and the controller controls the steering device of the load could be significantly reduced.

Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit (단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발)

  • Jo, Yong-Jun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.