• Title/Summary/Keyword: infrared sensors

Search Result 433, Processing Time 0.036 seconds

Sensor System Study for Intelligence Biped Walking Robot (지능형 이족보행로봇을 위한 센서시스템 연구)

  • Kim You Shin;Hwang Gyu Deuk;Choi Hyoung Sik;Lee Chang Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • In this paper, An analysis on the intelligence system for a biped walking robot(BWR) was made and its results were applied to the BWR. Various sensors were applied to the developed BWR for autonomous and intelligent walk in unknown environments. To measure the distance between the object and BWR, ultrasonic sensor and infrared-rays sensor were used. To identity surrounding environments, vision system was used. Gyro sensor was used to control the posture of BWR. Also, piezoelectricity sensor was used to identity the pressure of foot landing on the surface. Sensors applied to the robot have measurement errors according to noises or walking environments. To improve the function of these sensors, influences of noise or sensing errors were minimized using a sensor fusion scheme. A gait test using the sensor fusion system was performed, and its results are presented.

Obstacle Avoidance and Playing Soccer in a Quadruped Walking Robot (4족 보행 로봇의 장애물 회피와 축구하기)

  • Seo, Hyeon-Se;Sung, Young Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • In this paper, we introduce an intelligent quadruped walking robot that can perform stable walking and a couple of intelligent behaviors. The developed robot has two sets of ultrasonic sensors and six sets of infrared sensors and can perform obstacle avoidance by detecting obstacles and estimating the distances and directions of those obstacles. The robot also has a stereo camera and can paly soccer by detecting a ball and estimating the 3 dimensional coordinates of the ball. In performing those intelligent behaviors, the robot needs to have the capability of generating its walking patterns, solving the inverse kinematics problem, and interfacing several sensors in realtime. Therefore we designed a hierarchical controller that consists of a main controller and an auxiliary controller. The main controller is a 32-bit DSP that can perform fast floating-point opertaion and the auxiliary one is a 8-bit micro-controller. We showed that the developed quadruped walking robot successfully perform those intelligent behaviors through experiments.

Fabrication and Characteristics of Pyroelectric IR Sensor Using $1.6{\mu}m$ P(VDF/TrFE) thin film

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.86-90
    • /
    • 2001
  • A pyroelectric senior using P(VDF/TrFE) film for sensing materials has been fabricated and evaluated with other commercial pyroelectric sensors that use ceramic materials for sensing. The device was mounted in a TO-5 housing to detect infrared light of $5.5{\sim}14\;{\mu}m$ wavelength. The NEP (noise equivalent power) and specific detectivity $D^*$ of the device were $2.13{\times}10^{-8}\;W$ and $9.37{\times}10^6\;cm/w$ respectively under emission energy of $13\;{\mu}W/cm^2$ respectively. These result shows a better characteristics than other commercial pyroelectric sensors NEP $8.08{\times}10^{-7}\;W$ and $D^*$ $2.47{\times}10^5\;cm/w$.

  • PDF

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots (ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

Method for Measuring Absolute Position of a Yard Crane for Port Automation (항만 자동화를 위한 야드 크레인의 절대위치 측정 기법)

  • Chun T.W.;Kim K.M.;Lee H.H.;Kim H.G.;Nho E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.439-445
    • /
    • 2003
  • Since 1960s. container shipping volume has increased dramatically and continuous on a trend of rapid growth, and so the number of containers handled at the port increases. In order to improve yard crane operating efficiency, the precise position measurement of the yard crane is important. This paper describes the method to measure the absolute position of yard crane using the output pulse of an encoder and infrared sensors. The crane position is calculated by counting the output pulse of an incremental encoder, which is mounted on the wheel in the crane. By the way, the wheel slippage on rail may cause some errors in crane position information obtained from encoder pulses, and the errors in the crane position information are compensated with infrared sensors. The performance of proposed method is verified on experimental results with the simulator of yard crane, the size of which is about 1/10 with the real crane.

  • PDF

Characteristics and Fabrication of Optimal Thermopile on SiNx Membrane for Microspectrometer (마이크로 스펙트로미터 적외선 센서용 저응력 SiNx Membrane상에서의 최적화된 Thermopile 제작 및 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.44 no.1
    • /
    • pp.6-9
    • /
    • 2007
  • Twenty four types of thermopile for micro spectrometer infrared sensors were fabricated on low-stress Si3N4 membranes with $l.2{\mu}m-thickness$ using MEMS technology. Thermopile were designed and fabricated for optimum conditions by five parameters of thermocouple numbers $(16\sim48)$, thermocouple line widths $(10{\mu}m-25{\mu}m)$, thermocouple lengths $(100{\mu}m-500{\mu}m)$, membrane areas $(12mm2\sim2.52mm2)$ and junction areas $(150{\mu}m2\sim750{\mu}m2)$, respectively. It was thought that measurement results could be used for thermopile infrared sensors optimum structure for micro spectrometers.

Multi-sensor-based Mold Management System Research (멀티 센서 기반 금형 관리 시스템 연구)

  • Shin, Hyun-Jun;Kim, Sung-Jin;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.579-580
    • /
    • 2016
  • In molds management systems using radio frequency identification (RFID), in the case where the RFID tag is lost, the RFID technology cannot be utilized to identify the location of the logistics. In order to solve this problem, a multi-sensor-based mold management system using RFID and infrared sensors is proposed in this paper. The proposed system uses RFID to identify the location of the mold and, by installing infrared sensors on the mold racks, the manager can identify the presence and location of the mold by reaffirming whether the mold exists in that location or not.

  • PDF

Internal Defect Position Analysis of a Multi-Layer Chip Using Lock-in Infrared Microscopy (위상잠금 적외선 현미경 관찰법을 이용한 다층구조 칩의 내부결함 위치 분석)

  • Kim, Seon-Jin;Lee, Kye-Sung;Hur, Hwan;Lee, Haksun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Kim, Ghiseok;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2015
  • An ultra-precise infrared microscope consisting of a high-resolution infrared objective lens and infrared sensors is utilized successfully to obtain location information on the plane and depth of local heat sources causing defects in a semiconductor device. In this study, multi-layer semiconductor chips are analyzed for the positional information of heat sources by using a lock-in infrared microscope. Optimal conditions such as focal position, integration time, current and lock-in frequency for measuring the accurate depth of the heat sources are studied by lock-in thermography. The location indicated by the results of the depth estimate, according to the change in distance between the infrared objective lens and the specimen is analyzed under these optimal conditions.