• Title/Summary/Keyword: infrared lens

Search Result 122, Processing Time 0.02 seconds

Fisheye Lens for Image Processing Applications

  • Kweon, Gyeong-Il;Choi, Young-Ho;Laikin, Milton
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • We have developed a miniature fisheye lens with $190^{\circ}$ field of view operating simultaneously in the visible and the near infrared wavelengths. The modulation transfer function characteristic for the visible wavelength is sufficient for a mega-pixel-grade image sensor. The lens also has a fair resolution in the infrared wavelength region. The calibrated $f-{\theta}$ distortion is less than 5%, and the relative illumination is over 90%. In consequence, a sharp wide-angle image can be obtained which is uniform in brightness over the entire range of field angles. The real image heights for the visible and the near infrared wavelengths have been fitted to polynomial functions of incidence angle with sub-pixel accuracies. Combined with the near equidistance projection scheme of the lens, this lens can be advantageously employed in various image-processing applications requiring a wide-angle lens.

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung Kim;Jung-Hwan In;Karam Han;Yoon Hee Nam;Seon Hoon Kim;Ju Hyeon Choi
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.515-521
    • /
    • 2022
  • Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.

Design of Cooled Infrared Optical System Considering Narcissus (나르시서스를 고려한 냉각형 적외선 광학계 설계)

  • Jeong, Su Seong;Kim, Young Soo;Hong, Jin Suk;Lee, Kyoung Muk;Yoon, Jee Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.219-225
    • /
    • 2019
  • In an infrared optical system, using a cooled detector generates a phenomenon called a narcissus, in which the focal-plane array cooled to very low temperatures is reflected at the lens surface and detected. The narcissus can be removed by non-uniformity correction of the detector pixel, so narcissus is generally ignored in infrared optics. However, non-uniformity correction reduces the sensitivity of the system. Also, as the housing temperature varies due to an environmental temperature change, or a lens is moved for focusing or athermalization purposes, a narcissus may occur even after non-uniformity correction. To minimize such a narcissus, the amount of the effect must be controlled in the lens-design stage. In this paper we designed a midinfrared optical system and analyzed the narcissus by setting the lens surface reflectance to 1%. In addition, the design was divided into stages of an initial design, an improved design, and a minimum design, and the narcissus was improved to about 56% of that in the initial design.

Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique (칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치)

  • Song, Se-Yong;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Hoi-Youn;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • We fabricate a measuring system to measure the modulation transfer function (MTF) of a mid-infrared imaging silicon lens by using the knife-edge scanning technique. In particular, we measure on-axial tangential MTF of the silicon lens with the focal length of 50 mm and F-number F/4 in the wavelength band of mid-infrared between $3\;{\mu}m$ and $5\;{\mu}m$. In order to obtain the infinite object, the off-axial parabolic reflector with the focal length of 2.545 m is utilized. In the comparison with measured MTF data and designed MTF values curve, we find that the tolerance of measured MTF data below the spatial frequency of 7 lp/mm is within 2%.

Ultra Precision Machining Technique for Optical System Parts (초정밀 가공기를 활용한 광학계 부품 가공기술)

  • Yang, Sun-Choel;Kim, Sang-Hyuk;Huh, Myung-Sang;Chang, Ki-Soo;Park, Soon-Sub;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

Athermal Design and Performance Verification of an LWIR Zoom Lens for Drones

  • Kwang-Woo Park;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.366-374
    • /
    • 2024
  • This paper presents an optimum method for determining the parameters to athermalize a long-wavelength infrared (LWIR) zoom camera by introducing the defocus sensitivity analysis. To effectively find parameters that significantly affect thermal defocus, we simulated athermal analysis with temperature changes for all variables. Consequently, we found that the optimum parameter to correct thermal defocus is the compensation lens, and its movements with temperature at each zoom position are obtained from the simulated athermal analysis. To verify the efficiency of our athermal approach, we performed actual athermal tests in a broad temperature range at each zoom position. The simulated athermal analysis provides the initial position of the compensation lens at the corresponding temperature and zoom position. Then the compensation lens is elaboratively moved to serve the highest live contrast ratio (LCR) for the target. This experiment shows that the compensation lens locations in the actual test are closely matched to those in the simulated athermal analysis. In addition, two outdoor tests conducted in two different environments confirm that the autofocus system suggested in this study performs well at all zoom positions. Using the proposed athermal analysis approach in this paper, we efficiently realize an athermal system over the specified temperature and zoom ranges.

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens (적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성)

  • Sang-Jin Park;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

MRI의 현황과 전망

  • 전희국
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.