• 제목/요약/키워드: infrared detectors

검색결과 90건 처리시간 0.044초

A brief review on the recent progress of superconducting nanowire single photon detectors

  • Chong, Yonuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.22-25
    • /
    • 2017
  • Superconducting nanowire single photon detectors (SNSPD) have become the most competent photon-counting devices in wide range of wavelengths. Especially in the communication wavelength (infrared), SNSPD has shown unbeatable superior performance compared to the state-of-art semiconductor single photon detectors. The technology has matured enough for the last decade so that several commercial systems are now almost ready for routine use in general optics experiments. Here we summarize briefly the recent progress in this research field, and hope to motivate further research on the improvement of the device and the system. We cover the basic key concepts, device and system performances, remaining issues and possible further research directions of SNSPD.

DEVELOPMENT OF A CRYOGENIC TESTING SYSTEM FOR MID-INFRARED DETECTORS ON SPICA

  • Nishiyama, Miho;Kaneda, Hidehiro;Ishihara, Daisuke;Oseki, Shinji;Takeuchi, Nami;Nagayama, Takahiro;Wada, Takehiko
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.355-357
    • /
    • 2017
  • For future space IR missions, such as SPICA, it is crucial to establish an experimental method for evaluating the performance of mid-IR detectors. In particular, the wavelength dependence of the sensitivity is important but difficult to be measured properly. We are now preparing a testing system for mid-IR Si:As/Si:Sb detectors on SPICA. We have designed a cryogenic optical system in which IR signal light from a pinhole is collimated, passed through an optical filter, and focused onto a detector. With this system, we can measure the photoresponse of the detector for various IR light using optical filters with different wavelength properties. We have fabricated aluminum mirrors which are adopted to minimize thermal distortion effects and evaluated the surface figure errors. The total wavefront error of the optical system is $1.3{\mu}m$ RMS, which is small enough for the target wavelengths ($20-37{\mu}m$) of SPICA. The point spread function measured at a room temperature is consistent with that predicted by the simulation. We report the optical performance of the system at cryogenic temperatures.

달 관측 영상을 이용한 천리안위성 기상탑재체 가시채널 검출기의 성능감쇄 분석 (Degradation Monitoring of Visible Channel Detectors on COMS MI Using Moon Observation Images)

  • 서석배;진경욱
    • 대한원격탐사학회지
    • /
    • 제29권1호
    • /
    • pp.115-121
    • /
    • 2013
  • 천리안위성은 대한민국에서 개발한 최초의 정지궤도위성으로 궤도상 시험을 완료하고 통신, 해양, 기상임무에 대한 정상운영을 수행하고 있으며, 천리안위성의 기상탑재체는 지구 및 주변의 가시채널 및 적외채널 영상을 취득하고 있다. 본 논문에서는 천리안위성 가시채널 검출기의 성능 분석방법을 설명하고, 2년의 운영기간동안 성능 분석결과를 설명한다. 가시채널 검출기의 성능은 검출기에서 취득한 결과 및 ROLO 모델 기반의 결과를 이용해서 계산할 수 있으며, 분석을 통해서 검출기의 성능은 정상임을 확인하였다.

광대역 테라헤르츠 검출 소자 기술 동향 (Trends in Broadband Terahertz Detector Technology)

  • 신준환;최다혜;이의수;문기원;박동우;주경일;김무건;최경선;이일민;박경현
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.53-64
    • /
    • 2020
  • The terahertz (THz) region lies in between the millimeter and infrared spectral bands. A THz wave has the characteristics of non-invasiveness and non-ionization due to low photon energies, while having high penetrability in dielectrics. In addition, since the resonance frequencies of various molecules are included in the THz band, research on the application of spectral analysis and non-destructive testing has been widely studied. Towards this end, the research and development of THz detectors has become increasingly important in order to assess their applications in different areas such as astronomy, security, industrial non-destructive evaluations, biological applications, and wireless communications. In this report, we summarize the operating principles, characteristics, and utilization of various broadband technologies in THz detection devices. Further, we introduce the development status of our Schottky barrier diode technology as one of the broadband THz detectors that can be easily adopted as direct detectors in many fields of applications.

PZT박막 적외선 감지소자의 적외선 흡수층으로 증착된 니켈 박막의 광학 및 전기적 특성 분석 (Absorptance and Electrical Properties Evaluation of Nickel Layer Deposited onto Thin Film Pyroelectric PZT IR Detector)

  • 고종수
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1727-1732
    • /
    • 2004
  • A nickel layer was deposited onto the PZT thin films, serving both as a selective radiation absorption layer and as a top electrode. The absorption properties of such nickel coated multi-layered infrared detectors were studied in the visible and infrared wavelength ranges. The optimal thickness of the nickel layer on our substrate was 10nm. The maximum absorption coefficient of the deposited 10nm thick nickel layer was 0.7 at a 632nm wavelength. However, a striking asymmetric polarization hysteresis loop was observed in these PZT thin films with nickel as the top electrode. This asymmetric polarization was attributed to the difference between the dynamic pyroelectric responses in these Ni/PZT/Pt films poled either positively or negatively before the measurement. A positively poled film showed a 40% higher voltage response than a negatively poled detector.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Choi, In-Hoon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_x$) thin films are very good candidate material for uncooled infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_x$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than $1000{\AA}$. This paper presents a new fabrication process of $VO_x$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}(100{\AA})/V(80{\AA})/VO_{x}(500{\AA})$ by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than $-2%/^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Park, In-Hoon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_{x}$) thin films are very good candidate material for uncooked infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_{x}$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than 1000${\AA}$. This paper presents a new fabrication process of $VO_{x}$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}$(100${\AA}$)/V(80${\AA}$)/$VO_{x}$(500${\AA}$) by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than -2%/$^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.