T-P21 ## Type II InAs/GaSb Superlattice Infrared Detectors with P-on-N Polarity Structures <u>이상준</u>¹, 김준오¹, 노삼규¹, 최정우², E. Plis³, S. Krishna³ ¹한국표준과학연구원, ²경희대학교 물리학과, ³University of New Mexico Type II InAs/GaSb superlattice(SLs) infrared detector emerges in recent years has shown its great potential for operating at room temperature and sensing in a wide range from 2 μ m up to 30 μ m at least. The performance of the strain layer superlattice infrared detectors (SLIP) based on these alloys are extremely good with a large quantum efficiency ($\sim 30\text{-}60$ %) and long carrier lifetime ($\sim \mu$ s). In this paper, we report on high operating temperature mid wave infrared detectors (cut-off ~ 5 μ m at 300K) based on type-II InAs/GaSb superlattices with a P-on-N polarity. Presently, all InAs/GaSb strain layer superlattice photodiodes reported so far have an N-on-P polarity with a thin InAs n-type top contact, that is incompatible with most present day read out integrated circuits. The device structure consists of ~ 1.5 μ m 8ML InAs/8ML GaSb SL (300 periods) unintentionally doped absorber grown on top of 400 nm thick n-type contact layer (consisting of 8 ML InAs/8 ML GaSb SL with Si-doped InAs layers). This was followed by a 50 nm of p-type (Be-doped) thin GaSb layer, which served as the top contact. Current-voltage measurements reveal dark current density of ~ 5 x 10^{-7} A/cm² at 82 K and 0.18 A/cm² at 240 K (V_{bias} = -0.1 V). R₀A product was equal to ~ 1 x 10^{5} cm² at 82 K and 0.24 cm² at 240 K. Zero-bias D* was estimated to 2 x 10^{12} Jones and 2 x 10^{9} Jones at 80 K and 240 K, respectively.