• Title/Summary/Keyword: information granulation (IG)

Search Result 24, Processing Time 0.026 seconds

Optimization of Fuzzy Set-Fuzzy Systems based on IG by Means of GAs with Successive Tuning Method

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • We introduce an optimization of fuzzy set-fuzzy systems based on IG (Information Granules). The proposed fuzzy model implements system structure and parameter identification by means of IG and GAs. The concept of information granulation was coped with to enhance the abilities of structural optimization of the fuzzy model. Granulation of information realized with C-Means clustering helps determine the initial parameters of the fuzzy model such as the initial apexes of the membership functions in the premise part and the initial values of polynomial functions in the consequence part of the fuzzy rules. The initial parameters are adjusted effectively with the help of the GAs and the standard least square method. To optimally identify the structure and the parameters of the fuzzy model we exploit GAs with successive tuning method to simultaneously search the structure and the parameters within one individual. We also consider the variant generation-based evolution to adjust the rate of identification of the structure and the parameters in successive tuning method. The proposed model is evaluated with the performance of the conventional fuzzy model.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling (적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator (UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Design of Feed-Forward Fuzzy Set-based Neural Networks Using Symbolic Encoding and Information Granulation (기호코딩 및 정보입자를 이용한 전방향 퍼지 집합 기반 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2089-2090
    • /
    • 2006
  • 본 논문은 기호 코딩 및 정보입자를 이용한 유전자 알고리즘의 전방향 퍼지 집합 기반 뉴럴네트워크 (Information Granules and Symbolic Encoding-based Fuzzy Set Polynomial Neural Networks ; IG and SE based FSPNN)의 모델 설계를 제안한다. 기존 퍼지 집합기반 다항식 뉴럴네트워크(FSPNN)의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델은 각 입력에 대해 MFs의 개수 만큼 규칙을 생성하는 Fuzzy 집합기반 다항식 뉴럴네트워크(FSPNN)를 그대로 사용한다. 그리고 IG based gFSPNN의 평가을 위해 실험적 예제를 통하여 제안된 모델의 성능 및 근사화 능력의 우수함을 보인다.

  • PDF

AUTOMATIC DETECTION AND EXTRACTION ALGORITHM OF INTER-GRANULAR BRIGHT POINTS

  • Feng, Song;Ji, Kai-Fan;Deng, Hui;Wang, Feng;Fu, Xiao-Dong
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • Inter-granular Bright Points (igBPs) are small-scale objects in the Solar photosphere which can be seen within dark inter-granular lanes. We present a new algorithm to automatically detect and extract igBPs. Laplacian and Morphological Dilation (LMD) technique is employed by the algorithm. It involves three basic processing steps: (1) obtaining candidate "seed" regions by Laplacian; (2) determining the boundary and size of igBPs by morphological dilation; (3) discarding brighter granules by a probability criterion. For validating our algorithm, we used the observed samples of the Dutch Open Telescope (DOT), collected on April 12, 2007. They contain 180 high-resolution images, and each has a $85{\times}68\;arcsec^2$ field of view (FOV). Two important results are obtained: first, the identified rate of igBPs reaches 95% and is higher than previous results; second, the diameter distribution is $220{\pm}25km$, which is fully consistent with previously published data. We conclude that the presented algorithm can detect and extract igBPs automatically and effectively.