지난 10년간 인터넷과 컴퓨팅 기술의 발전, 모바일 기기와 센서들의 진화, 페이스북이나 트위터와 같은 소셜 네트워크의 출현 등으로 정보량은 급속도로 늘어나고 있다. 대용량의 데이터와 이로 인해 파생되는 방대한 정보는 그것을 얻고자 하는 사람들에게 한계를 느끼게 한다. 따라서 방대한 정보 속에서 의미있는 지식을 추출하기 위한 시스템 기반의 연구가 활발히 시도되고 있다. 이로 인해 지식 추출 시스템의 중요성이 날로 강조되고 있지만, 정확성과 효율성 측면에서 여전히 많은 과제가 있다. 지식 추출 시스템의 성능을 향상시키기 위해서는 시스템을 평가하기 위한 테스트 컬렉션이 중요하다. 본 논문에서는 기술 지식의 자동 추출을 위해 개발된 시스템을 평가하기 위한 테스트 컬렉션을 소개한다. KEEC/KREC(KISTI Entity Extraction Collection/KISTI Relation Extraction Collection)라 명명된 테스트 컬렉션에 대한 구축 절차 및 기준과 구축된 테스트 컬렉션의 특징을 제시한다. 특히 테스트 컬렉션의 주요한 평가 기준이 되는 정확도를 높이기 위해 태깅 지원 도구를 활용한 전문가 태깅 방식을 사용하는 것이 주요 특징이다. 태깅 지원 도구를 활용한 전문가 태깅은 시스템에 의한 자동 태깅 도구들 또는 사람이 태깅을 하되, 지원 도구 없이 태깅하는 방법보다 태깅의 정확도를 높여준다. 구축된 KEEC/KREC은 실제로 과학기술 문헌에 존재하는 PLOT(Person, Location, Organization, Technology) 간 연관관계 추출 성능 평가를 위해서 사용되었고, 의미있는 연구결과를 도출하는데 기여하였다.
In this paper, we have designed and implemented a parameter extraction system for analyzing Internet using SNMP. The extraction system has two modules; one is collection request module, and the other is analysis request module. The collection request module generates a polling script, which is used to collect management information from the managed system periodically. With this collected data, analysis request module extracts analysis parameters. These parameters are traffic flow analysis, interface traffic analysis, packet traffic analysis, and management traffic analysis parameter. For management activity, we have introduced two-step-analysis-view. One is Summary-View, which is used find out malfunction of a system among the entire managed systems. The Other is Specific-View. With this view we can analyze the specific system with all our analysis parameters. To show available data as indicators for line capacity planning, network redesigning decision making of performance upgrade for a network device and things like that.
빅데이터가 여러 분야에서 다양하게 접목됨에 따라 빅데이터 시장이 하드웨어로부터 시작해서 서비스 소프트웨어 부문으로 확장되고 있다. 특히 빅데이터 의미 파악 및 이해 능력, 분석 결과 등 총체적이고 직관적인 시각화를 위하여 애플리케이션을 제공하는 거대 플랫폼 시장으로 확대되고 있다. 그 중에서 SNS(Social Network Service) 등과 같은 소셜 미디어를 활용한 빅데이터 추출 및 분석에 대한 수요가 기업 뿐만 아니라 개인에 이르기까지 매우 활발히 진행되고 있다. 그러나 이처럼 사용자 트렌드 분석과 마케팅을 위한 소셜 미디어 데이터의 수집 및 분석에 대한 많은 수요에도 불구하고, 다양한 소셜 미디어 서비스 인터페이스의 이질성으로 인한 동적 연동의 어려움과 소프트웨어 플랫폼 구축 및 운영의 복잡성을 해결하기 위한 연구가 미흡한 상태이다. 따라서 본 논문에서는 소셜 미디어 데이터의 수집에서 추출 및 분류에 이르는 과정을 하나로 통합하여 운영할 수 있는 프레임워크를 개발하는 방법에 대해 제시한다. 제시된 프레임워크는 이질적인 소셜 미디어 데이터 수집 채널의 문제를 어댑터 패턴을 통해 해결하고, 의미 연관성 기반 추출 기법과 주제 연관성 기반 분류 기법을 통해 소셜 토픽 추출과 분류의 정확성을 높였다.
대용량 문서에서 정보를 추출하는 작업은 크게 개체명 인식, 전문용어 인식, 관계추출 작업으로 구성된다. 이들 각각의 기술들은 지금까지 독립적으로 연구되어 왔기 때문에, 이와 관련된 기계학습모델을 위한 테스트컬렉션 또한 독립적으로 구축되어 왔다. 과학기술문헌의 경우 개체명과 전문용어가 혼재되어 있는 형태로 구성된 문서가 많아, 기존의 연구결과를 이용하여 접근한다면 결과물 통합과정의 불편함과 처리속도에 많은 제약이 따르므로, 개체명과 전문용어를 동시에 추출 할 수 있는 기계학습 모델을 위한 테스트컬렉션이 필요하다. 본 연구에서는 생의학 분야 과학기술문헌에 대한 개체명, 전문용어를 통합한 PLOT(Person, Location, Organization, Terminology)과, PLOT 간의 관계추출을 위한 테스트컬렉션을 구축한다.
대용량 문서에서 포함된 정보를 추출하는 작업은 정보검색분야 뿐만 아니라 질의응답과 요약분야에서 매우 유용하다. 정보 추출 분야 중 관계추출 기술이 중요하게 인식되고 있으나, 기계학습모델을 기반으로 개발하기 위한 학습집합과 개발된 기술을 평가하기 위한 평가집합의 부재로 연구에 난항을 겪고 있다. 본 논문은 한국과학기술정보연구원(KISTI)이 보유하고 있는 해외학술지 데이터를 기반으로 과학기술용어에 대한 관계추출 기술 시스템을 개발하고 평가하기 위한 테스트 컬렉션(KREC2008) 구축을 위한 구축방법 및 절차를 기술한다. 해외 학술지 데이터의 초록을 대상으로 기술용어를 추출하였고, 기술용어의 쌍의 관계에 해당되는 단어를 Wordnet에 매핑하여 동사의 개념을 일반화하는 여러 개의 개념화된 후보군을 추출하였다. 평가기준 및 절차 교육이 이루어진 평가자가 개념화된 후보군에서 적합하다고 판단되는 "개념"을 "관계"로 지정하였다. Wordnet을 이용하여 "관계"에 대한 후보군을 생성하였기때문에, 일관성 있는 관계설정의 품질의 향상시켰고 비전문가도 쉽게 테스트컬렉션을 구축할 수 있는 방법을 제공하였다. 현재 KREC2008은 정보추출 연구자 및 개발자에게 공개되어 있으며, 과학기술분야 관계추출 시스템의 개발 및 신뢰도 평가를 목적으로 하는 학술대회의 연구결과 발표 및 제품 비교 등에 활용될 예정이다.
본 논문에서는 학술 문헌에서 표현된 단백질 간 상호 작용(Protein-Protein Interaction) 정보를 자동으로 추출하기 위한 확장된 형태의 Convolutional Neural Network (CNN) 모델을 제안한다. 이 모델은 기존에 관계 추출(Relation Extraction)을 위해 고안된 단순 자질 기반의 CNN 모델을 확장하여 다양한 전역 자질들을 추가적으로 적용함으로써 성능을 개선할 수 있는 장점이 있다. PPI 추출 성능 평가를 위해서 많이 활용되고 있는 준거 평가 컬렉션인 AIMed를 이용한 실험에서 F-스코어 기준으로 78.0%를 나타내어 현재까지 도출된 세계 최고 성능에 비해 8.3% 높은 성능을 나타내었다. 추가적으로 CNN 모델이 복잡한 언어 처리를 통한 자질 추출 작업을 하지 않고도 단백질간 상호 작용 추출에 높은 성능을 나타냄을 보였다.
스마트폰에 대한 소송이 이루어지고 있고, 최근, 법정에서의 스마트폰 증거데이터에 대한 증거자료 채택이 많아지고 있다. 따라서 불법적인 스마트폰 사용에 대한 증거데이터 추출을 위한 포렌식 절차와 증거물 수집에 대한 연구가 필요하다. 본 논문에서는 스마트폰의 증거데이터 주출에 대한 포렌식 절차를 제시하고, 스마트폰 포렌식 증거를 수집함으로써 디지털 증거의 무결성을 확보하고 사건을 진실을 발견하기 위한 방법에 대해 연구하였다. 본 연구를 통해 스마트폰 포렌식의 발전에 기여할 수 있을 것이다.
인간은 문서전체를 읽지 않고 대표적인 단어를 보는 것만으로 정치나 스포츠 등의 분야를 정확히 인지할 수 있다. 문서전체를 대상으로 하지 않고 부분텍스트에서 출현하는 소수의 단어정보에서 문서의 분야를 정확히 결정하기 위해 분야연상어의 구축은 중요한 연구과제이다. 인간이 미리 분야체계를 정의하고, 각 분야에 해당하는 문서를 인터넷이나 서적을 통해 수집한다. 본 논문은 수집문서의 분야를 정확히 지시하는 분야연상어를 수집하는 방법을 제안한다. 문서의 분야결정 시점을 고려하여 분야연상어의 수준과 안정성 랭크에 대하여 논의한다. 학습데이터에서 분야연상어 후보의 각 수준을 자동으로 결정하고, 컴퓨터가 제시하는 분야연상어의 수준, 안정성 랭크, 집중률, 빈도정보를 이용하여 단일 분야연상어를 수집하는 방법을 제안한다.
As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.
암반 내 구조물을 시공하는 경우 역학적 안정성을 평가하기 위하여 암반의 특성을 조사한다. 이 경우 암반의 특성은 주로 암반 내 절리의 특성에 의하여 좌우된다. 지금까지는 암반 내 절리의 특성을 조사하기 위하여 암반이 노출된 사면이나 노두에 접근하고 육안으로 직접 관찰하였다. 이때 급사면과 같은 곳에서 접근의 문제, 작업의 안전 문제, 많은 시판이 걸리는 문제, 조사시간에 비하여 얻은 정보량의 부족, 정보의 재현 문제, 측정 오차 문제 등의 제한이 있었다. 따라서 이와 같은 문제를 개선하기 위하여 LIDAR (light detection and ranging)로 암반을 스캔하여 얻은 포인트 클라우드(point cloud)글 Split-FX 소프트웨어로 처리한 결과 절기의 방향과 간격 및 절리면의 거칠기 등 절리의 특성을 정확하고 효율적으로 분석할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.