• Title/Summary/Keyword: influenza nucleoprotein

Search Result 11, Processing Time 0.024 seconds

Optimized Expression, Purification, and Rapid Detection of Recombinant Influenza Nucleoproteins Expressed in Sf9 Insect Cells

  • Yoon, Sung-Jin;Park, Young-Jun;Kim, Hyun Ju;Jang, Jinwoo;Lee, Sang Jun;Koo, Sunwoo;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1683-1690
    • /
    • 2018
  • Accurate and rapid diagnosis of influenza infection is essential to enable early antiviral treatment and reduce the mortality associated with seasonal and epidemic infections. Immunochromatography is one of the most common methods used for the diagnosis of seasonal human influenza; however, it is less effective in diagnosing pandemic influenza virus. Currently, rapid diagnostic kits for pandemic influenza virus rely on the detection of nucleoprotein (NP) or hemagglutinin (HA). NP detection shows higher specificity and is more sensitive than HA detection. In this study, we time-dependently screened expression conditions, and herein report optimal conditions for the expression of recombinant nucleoprotein (rNP), which was 48 h after infection. In addition, we report the use of the expressed rNP in a rapid influenza diagnostic test (SGT i-flex Influenza A&B Test). We constructed expression vectors that synthesized rNP (antigen) of influenza A and B in insect cells (Sf9 cells), employed the purified rNP to the immunoassay test kit, and clearly distinguished NPs of influenza A and influenza B using this rapid influenza diagnostic kit. This approach may improve the development of rapid test kits for influenza using NP.

Improved Immune Response to Recombinant Influenza Nucleoprotein Formulated with ISCOMATRIX

  • Cargnelutti, Diego E.;Sanchez, Maria V.;Alvarez, Paula;Boado, Lorena;Glikmann, Graciela;Mattion, Nora;Scodeller, Eduardo A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.416-421
    • /
    • 2012
  • Current influenza vaccines elicit antibodies effective against homologous strains, but new strategies are urgently needed for protection against emerging epidemic or pandemic strains. Although influenza vaccine candidates based on the viral nucleoprotein (NP) or matrix protein do not elicit sterilizing immunity, they have the advantage of inducing immunity that may cover a larger number of viral strains. In this study, recombinant NP produced in Escherichia coli was purified and formulated in combination with the adjuvant ISCOMATRIX. This formulation increased a NP-specific immunity in mice, with a Th1 profile, and may constitute a promising low-cost influenza vaccine candidate, with ability to stimulate humoral and cellular immune responses.

Development and Characterization of Monoclonal Antibodies against Nucleoprotein for Diagnosis of Influenza A Virus

  • Nguyen, Hong Phuong;Kwak, Chaewon;Heo, Chang-Kyu;Cho, Eun Wie;Yang, Jihyun;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.809-815
    • /
    • 2018
  • Influenza, which is a highly contagious disease caused by the influenza A virus, continues to be a major health concern worldwide. Although the accurate and early diagnosis of influenza virus infection is important for controlling the spread of this disease and rapidly initiating antiviral therapy, the current influenza diagnostic kits are limited by their low sensitivity. In this study, we developed several new influenza nucleoprotein (NP)-specific monoclonal antibodies (mAbs) and compared their sensitivity and specificity of those with commercially available anti-NP mAbs. Three mAbs, designated M24.11, M34.3, and M34.33, exhibited higher reactivities to recombinant NPs and A/Puerto Rico/8/1934 (H1N1) viral lysates compared with the commercial mAbs, as assessed using enzyme-linked immunosorbent assays. M34.3 and M34.33 showed higher reactivities with A/California/04/09 (pandemic H1N1) and A/Philippines/2/82 (H3N2) viral lysates than the commercial mAbs. In contrast, M24.11 had marked reactivity with H3N2 but not with pandemic H1N1. Immunofluorescent confocal microscopy showed that the three mAbs effectively detected the presence of influenza virus in lung tissues of mice infected with A/Puerto Rico/8/1934. These results indicate that the newly developed M34.3 and M34.33 mAbs could be useful for the development of influenza diagnostics.

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.28.1-28.14
    • /
    • 2021
  • Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection

  • Hyun-Jung Kong;Youngwon Choi;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2023
  • Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.

Molecular Characterization of an Avian-origin Reassortant H7N1 Influenza Virus (조류 유래 재조합 H7N1 인플루엔자 바이러스의 분자적 특성 규명)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.605-611
    • /
    • 2023
  • Recently, sporadic cases of human infection by genetic reassortants of H7Nx influenza A viruses have been reported; such viruses have also been continuously isolated from avian species. In this study, A/wild bird/South Korea/sw-anu/2023, a novel reassortant of the H7N1 avian influenza virus, was analyzed using full-genome sequencing and molecular characterization. Phylogenetic analysis showed that A/wild bird/South Korea/sw-anu/2023 belonged to the Eurasian lineage of H7Nx viruses. The polymerase basic (PB)2, PB1, polymerase acidic (PA), and nucleoprotein (NP) genes of these viruses were found to be closely related to those of avian influenza viruses isolated from wild birds, while the hemagglutinin (HA), neuraminidase (NA), matrix (M), and nonstructural (NS) genes were similar to those of avian influenza viruses isolated from domestic ducks. In addition, A/wild bird/South Korea/sw-anu/2023 also had a high binding preference for avian-specific glycans in the solid-phase direct binding assay. These results suggest the presence of a new generation of H7N1 avian influenza viruses in wild birds and highlight the reassortment of avian influenza viruses found along the East Asian-Australasian flyway. Overall, H7Nx viruses circulate worldwide, and mutated H7N1 avian viruses may infect humans, which emphasizes the requirement for continued surveillance of the H7N1 avian influenza virus in wild birds and poultry.

Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene

  • Choi, So-Young;Suh, You-Suk;Cho, Jae-Ho;Jin, Hyun-Tak;Chang, Jun;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.169-178
    • /
    • 2009
  • DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.

Inactivation of Avian Influenza Viruses by Alkaline Disinfectant Solution (알칼리성 소독액에 의한 조류인플루엔자바이러스 불활성화)

  • Jo, Su-Kyung;Kim, Heui-Man;Lee, Chang-Jun;Lee, Joo-Seob;Seo, Sang-Heui
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.340-344
    • /
    • 2007
  • Avian influenza viruses cause a considerable threat to humans and animals. In this study, we investigated whether alkaline disinfectant solution can inactivate H5N1, H3N2, H6N1, and H9N2 subtypes of avian influenza virus. When H5N1, H3N2, H6N1, and H9N2 avian influenza viruses were treated with alkaline solution diluted with PBS (pH 7.2) prior to infection into MDCK cells, alkaline disinfectant solution (at dilutions up to $10^{-2}$) completely inactivated all avian influenza subtypes tested. To confirm the inactivation of avian influenza viruses by alkaline disinfectant solution, we used an immunofluorescence assay with influenza A anti-nucleoprotein antibody and FITC-labeled secondary antibody to stain MDCK cells infected with avian H9N2 influenza viruses. No staining was observed in MDCK rells infected with H9N2 viruses that were pre-treated with a $10^{-2}$ dilution of alkaline disinfectant solution, while strong staining was observed in MDCK cells infected with H9N2 viruses without pre-treatment. Our results indicate that alkaline solution could help to control avian influenza viruses including the highly pathogenic H5N1 subtype.

진흙버섯의 항인플루엔자 활성 및 활성성분 규명

  • Hwang, Byung Soon;Yun, Bong-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.41-41
    • /
    • 2016
  • Influenza viruses are RNA viruses that belong to the Orthomyxoviridae family, and those can be divided into three types; A, B, and C, which based on the differences of the inner nucleoproteins and genomic structures. All three genera differ in their genomic structure and nucleoprotein content, they are further classified into various serotypes based on the two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). These glycoproteins play crucial roles in viral infection and replication. Hemagglutinin mediates binding of virions to sialic acid receptors on the surfaces of target cells at the initial stage of infection. Neuraminidase cleaves the glycosidic bonds of sialic acids from the viral and cell surfaces to release the mature virions from infected cells, after viral replication. Because NA plays an important role in the viral life cycle, it is considered an attractive therapeutic target for the treatment of influenza. The methanolic extracts of Phellinus baumii and Phellinus igniarius exhibited significant activity in the neuraminidase inhibition assay. Polyphenolic compounds were isolated from the methanolic extracts. The structures of these compounds were determined to be hispidin, hypholomine B, inoscavin A, davallialactone, phelligridin D, phelligridin E, and phelligridin G by spectroscopic methods. Compounds inhibited the H1N1 neuraminidase activity in a dose-dependent manner with $IC_{50}$ values of 50.9, 22.9, 20.0, 14.2, 8.8, 8.1 and $8.0{\mu}M$, respectively. Moreover, these compounds showed anti-influenza activity in the viral cytopathic effect (CPE) reduction assay using MDCK cells. These results suggests that the polyphenols from P. baumii and P. igniarius are promising candidates for prevention and therapeutic strategies against viral infection.

  • PDF