• Title/Summary/Keyword: influenza in birds

Search Result 46, Processing Time 0.026 seconds

Generating GAN-based Virtual data to Prevent the Spread of Highly Pathogenic Avian Influenza(HPAI) (고위험성 조류인플루엔자(HPAI) 확산 방지를 위한 GAN 기반 가상 데이터 생성)

  • Choi, Dae-Woo;Han, Ye-Ji;Song, Yu-Han;Kang, Tae-Hun;Lee, Won-Been
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • This study was conducted with the support of the Information and Communication Technology Promotion Center, funded by the government (Ministry of Science and ICT) in 2019. Highly pathogenic avian influenza (HPAI) is an acute infectious disease of birds caused by highly pathogenic avian influenza virus infection, causing serious damage to poultry such as chickens and ducks. High pathogenic avian influenza (HPAI) is caused by focusing on winter rather than year-round, and sometimes does not occur at all during a certain period of time. Due to these characteristics of HPAI, there is a problem that does not accumulate enough actual data. In this paper study, GAN network was utilized to generate actual similar data containing missing values and the process is introduced. The results of this study can be used to measure risk by generating realistic simulation data for certain times when HPAI did not occur.

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Lower Antibody Response in Chickens Homozygous for the Mx Resistant Allele to Avian Influenza

  • Qu, L.J.;Li, X.Y.;Xu, G.Y.;Ning, Z.H.;Yang, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.465-470
    • /
    • 2009
  • The chicken Mx gene has been regarded as a candidate gene for resistance to avian influenza virus (AIV). In this study, three groups of chickens with homozygotes (AA, GG) and heterozygotes (AG) of the resistant (A) and susceptible alleles (G) to AIV of the Mx gene were constructed from a line of dwarf egg-type chickens. These chickens were not examined for their resistant activities to AIV because the differential resistance had only been detected in vitro. The birds of the three groups were vaccinated with inactivated H5N2 AIV vaccine and the level of hemagglutination inhibition (HI) antibody to AIV was detected. The association between disease resistant activity to AIV and antibody response to AIV vaccination in the three groups was analyzed. The chickens with homozygous resistant allele A showed the lowest antibody levels, whereas the heterozygous chickens (AG) presented the highest antibody level after the boosting vaccination, which indicates that the efficiency of artificial selection on the resistant allele of Mx gene will be compromised since the homozygotes of the allele presented the weakest antibody response to the corresponding vaccine.

Development and physiological assessments of multimedia avian esophageal catheter system

  • Nakada, Kaoru;Hata, Jun-ichi
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • We developed multimedia esophageal catheters for use with birds to measure and record ECG and angular velocity while anesthesized, at rest, and in flight. These catheters enable estimates of blood pressure based on readings given by an angular velocity sensor and by RR intervals of ECG affected by EMG. In our experiments, the catheters had the following characteristics: 1. Esophageal catheters offer a topological advantage with 8-dB SNR improvement due to elimination of electromyography (EMG). 2. We observed a very strong correlation between blood pressure and the angular velocity of esophageal catheter axial rotation. 3. The impulse conduction pathway (Purkinje fibers) of the cardiac ventricle has a direction opposite to that of the mammalian pathway. 4. Sympathetic nerves predominate in flight, and RR interval variations are strongly suppressed. The electrophysiological data obtained by this study provided especially the state of the avian autonomic nervous system activity, so we can suspect individual's health condition. If the change of the RR interval was small, we can perform an isolation or screening from the group that prevent the pandemics of avian influenza. This catheter shall be useful to analysis an avian autonomic system, to perform a screening, and to make a positive policy against the massive infected avian influenza.

Field and laboratory investigation of highly pathogenic avian influenza H5N6 and H5N8 in Quang Ninh province, Vietnam, 2020 to 2021

  • Trong Duc Tran;Suwicha Kasemsuwan;Manakorn Sukmak;Waraphon Phimpraphai;Tippawon Prarakamawongsa;Long Thanh Pham;Tuyet Bach Hoang;Phuong Thi Nguyen;Thang Minh Nguyen;Minh Van Truong;Tuan Pham Dao;Pawin Padungtod
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.20.1-20.15
    • /
    • 2024
  • Background: Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. Objectives: This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. Methods: A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. Results: There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. Conclusions: Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.

Evaluation on Immunogenicity and Safety of Avian Influenza Isolate(ADL0401) as a Candidate for the Killed Vaccine against tow-Pathogenic Avian Influenza (약병원성 조류인플루엔자 사독백신개발을 위한 후보주(ADL0401)의 면역 원성 및 안전성 평가)

  • Lee J. S.;Ha D. H.;Kim J. E.;Ha B. D.;Mo I. P.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Avian influenza (AI) virus (AIV) is distributed worldwide and it has been isolated from various species of wild and domestic birds. AI transfers with high speed and shows diverse pathogenicity syndroms. In Korea, several low Pathogenic AIV, H9N2, have been isolated from the commercial farms with severe decrease of egg production and mortality resulted in severe economic loss since 1996. Therefore, it has been requested to develop AI vaccines to prevent clinical signs and economic losses from the field infection of AIV. To develop a killed vaccine that efficiently prevents low pathogenic AIV (H9N2), evaluation on the pathogenicity and selection of an inactivator for H9N2 is taking place and is being tested safety and immunogenicity of vaccine produced. Based on the pathogenicity test and viral reisolation test, the ADL0401 isolate is the characteristic low pathogenic AIVs and has fairly similar biologic functions compared with MS96 which is the official low pathogenic AIV (H9N2) and one of the predominant AIV isolated from poultry farms in Korea. In antigenicity tests, the ADL0401 and MS96 virus have no significant antigenic difference. In inactivation tests, the ADL0401 isolates can be easily inactivated with $0.1\%$ Formalin at $37^{\circ}C$ within 1 hour with a little decrease of HA titer. The vaccine developed in the present report has no harmful effect on bird and forms good immune capability. Therefore, the isolates, ADL0401 can be used for a killed vaccine which can reduce the clinical signs and viral shedding in the birds infected with H9N2 low pathogenic AIVs.

Prevent and Track the Spread of Highy Pathogenic Avian Influenza Virus using Big Data (빅데이터를 활용한 HPAI Virus 확산 예방 및 추적)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • This study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and is based on artificial intelligence-based HPAI spread analysis and patterning. Highly Pathogenic Avian Influenza (HPAI) is coming from abroad through migratory birds, but it is not clear exactly how it spreads to farms. In addition, it is assumed that the main cause of the spread is the vehicle, but the main cause of the spread is not exactly known. However, it is necessary to analyze the relationship between the vehicles and the facilities at the farms where they occur, as the type of vehicles that visit the farms most frequently is between farms and facilities, such as livestock transportation and feed transportation. In this paper, based on the Korea Animal Health Integrated System (KAHIS) data provided by Animal and Plant Quarantine Agency, the main cause of HPAI virus transfer is to be confirmed between vehicles and facilities.

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

A GIS-Based Mapping to Identify Locations at Risk for Highly Pathogenic Avian Influenza Virus Outbreak in Korea (지리정보시스템 기반의 고병원성 조류인플루엔자 발생 위험지도 구축)

  • Lee, Gyoungju;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.34 no.2
    • /
    • pp.146-151
    • /
    • 2017
  • Six major outbreaks of highly pathogenic avian influenza (HPAI) occurred from 2003 to 2016 in Korea. Epidemiological investigations of each outbreak revealed that migratory birds were the primary source of the HPAI virus. During the last five years, the geographic transmission pattern of domestic HPAI seems to have extended from local to nationwide; therefore, it is necessary to identify specific locations in which poultry farms are at elevated risk for HPAI outbreak to enable targeted surveillance and other mitigation strategies. Here, a geographical information system (GIS)-based analysis was used to identify geographic areas at high risk for future HPAI incidents in Korea based on historical outbreak data collected between December 2003 and April 2016. To accomplish this, seven criteria were used to identify areas at high-risk for HPAI occurrence. The first three criteria were based on defined spatial criteria buffering of 200 bird migration sites to some defined extents and the historical incidence of HPAI outbreaks at the buffering sites. The remaining criteria were based on combined attribute information such as number of birds or farms at district levels. Based on the criteria established for this study, the most-likely areas at higher risk for HPAI outbreak were located in Chungcheong, Jeolla, Gyeonggi, and Gyeongnam provinces, which are densely populated poultry regions considered major poultry-production areas that are located along bird migration sites. The proportion of areas at risk for HPAI occurrence ranged from 4.5% to 64.9%. For the worst criteria, all nine provinces, including Jeju Island, were found to be at risk of HPAI. The results of this study indicate that the number of poultry farms at risk for HPAI outbreaks is largely underestimated by current regulatory risk assessment procedures conducted for biosecurity authorization. The HPAI risk map generated in this study will enable easy use of information by policy makers to identify surveillance zones and employ targeted surveillance to reduce the impact of HPAI transmission.

Analysis of residual pesticides in dead wild birds and other animals during 2008-2009 in Korea (2008-2009년 국내 폐사 야생조류 및 동물 체내의 잔류농약 분석)

  • Jang, Jung-Hee;Bong, Young-Hoon;Kim, Dong-Gyu;Kim, MeeKyung;Chung, Gab-Soo;Son, Seong-Wan
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.3
    • /
    • pp.197-203
    • /
    • 2010
  • Pesticides are useful to eliminate harmful insects and grow crops however, misuse and abuse of pesticides may cause a death of wild birds, livestock, and companion animals. We analyzed residual pesticides in the ingesta and tissues from the dead wild birds, livestock, and companion animals which were suspected pesticide poisoning based on the diagnosis of the Animal Disease Diagnostic Center of National Veterinary Research and Quarantine Service (NVRQS). The samples were primarily brought to NVRQS from local communities and veterinary diagnostic laboratories. The 231 suspicious samples of pesticide poisoning based on the necropsy were analyzed by GC/NPD, GC/FPD, GC/ECD, or GC/MSD in 2008 and 2009. Pesticides were identified from the 55 samples of total 143 samples analyzed in 2008 and from the 34 samples of total 88 samples analyzed in 2009. The pesticide identification rates in 2008 were higher than the rates in 2009. It may have relevance to the increased samples with the outbreak of avian influenza in 2008 in Korea. The concentrations of pesticides found in the dead animals varied and exceeded the respective $LD_{50}$ of pesticides in many cases. Monochrotophos, phosphamidon, and methomyl were the most common pesticides found and those pesticides are high rank sales in Korea. The cause of pesticide poisoning in animal is assuming a misuse and an abuse of commonly used pesticides in Korea.