• Title/Summary/Keyword: inflow turbulence

Search Result 81, Processing Time 0.027 seconds

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

Investigation of the effects of free-stream turbulence on wind-induced responses of tall building by Large Eddy Simulation

  • Li, Q.S.;Hu, G.;Yan, Bo-Wen
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.599-618
    • /
    • 2014
  • In this study, a square rectangular tall building is considered to investigate the effects of turbulence integral length scale and turbulence intensity on the along-wind responses, across-wind responses and torsional responses of the tall building by Large Eddy Simulation (LES). A recently proposed inflow turbulence generator called the discretizing and synthesizing random flow generation (DSRFG) approach is applied to simulate turbulent flow fields. It has been proved that the approach is able to generate a fluctuating turbulent flow field satisfying any given spectrum, desired turbulence intensity and wind speed profiles. Five profiles of turbulence integral length scale and turbulence intensity are respectively generated for the inflow fields by the DSRFG approach for investigating the effects of turbulence integral length scale and turbulence intensity on the wind-induced responses of the tall building. The computational results indicate that turbulence integral length scale does not have significant effect on the along-wind (displacement, velocity and acceleration) responses, across-wind displacement and velocity responses, while the across-wind acceleration and torsional responses vary without a clear rule with the parameter. On the other hand, the along-wind, across-wind and torsional responses increase with the growth of turbulence intensity.

Investigation of wake characteristics in turbulence of stable atmospheric boundary layer (안정경계층 난류에서의 터빈 후류 특성 연구)

  • Na, Jisung;Ko, Seungchul;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.28-31
    • /
    • 2016
  • In this study, we investigate the wake characteristics in two cases which are laminar inflow and turbulent inflow. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. Turbulent inflow which contains the characteristic of the stable atmospheric boundary layer is used. We perform the quantitative analysis of velocity deficit and turbulence intensity in two cases. Time series of velocity deficit at the first, the second column in two cases are compared to observe the performance of wind turbine. The performance in the first column in laminar inflow is overestimated compared to that in turbulent inflow. And we observe that wake in the case with turbulent inflow drive to the span-wise direction and wake recovery in turbulent inflow is more effective. In quadrant analysis of Reynolds stress, the ejection and the sweep motion in turbulent inflow case are bigger than those in laminar inflow case.

Thermo-Acoustic Instability in the Horizontal Rijke Tube

  • Song Woo-Seog;Lee Seung-Bae;Shin Dong-Shin;Na Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.905-913
    • /
    • 2006
  • The instability curve of a Rijke tube system was obtained accurately by following different paths of heat power and flow-rate for three regions and by defining its locus from the criterion based on the measured sound pressure levels. The unstable limits in the region of flow-rate lower than that at the minimal power are compared with previous data. To observe the effect of turbulence on the unstable limits, inflow turbulence was introduced by placing a bundle of circular cylinders upstream of the heating part ($50). The large-amplitude inflow fluctuation may delay the transition of the chamber acoustic mode to the unstable Bone even at a sufficient power.

EFFECTS OF TURBULENCE MODEL AND EDDY VISCOSITY IN SHOCK-WAVE / BOUNDARY LAYER INTERACTION (충격파 경계층 상호작용에서 난류모델 및 난류점성의 효과)

  • Jeon, Sang Eon;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Two compression ramp problems and an impinging shock problem are computed to investigate influence of turbulence models and eddy viscosity on the shock-wave / boundary layer interaction. A Navier-Stokes boundary layer generation code was applied to the generation of inflow boundary conditions. Computational results are validated well with the experimental data and effects of turbulence models are investigated. It is shown that the behavior of turbulence (eddy) viscosity directly affects both the extent of the separation and shock-wave positions over the separation.