• Title/Summary/Keyword: infinite product sums

Search Result 5, Processing Time 0.022 seconds

ON TRANSFORMATION OF INFINITE PRODUCTS

  • Jung, Soon-Mo
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.57-68
    • /
    • 1996
  • In the classical analysis there are various theorems which permit us to interchange limits and infinite sums, limits and integrals, integrals and infinite sums, etc. The infinite products as well as the infinite series play an important role in different branches of mathematics.

  • PDF

THE RELATION PROPERTY BETWEEN THE DIVISOR FUNCTION AND INFINITE PRODUCT SUMS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.507-552
    • /
    • 2016
  • For a complex number q and a divisor function ${\sigma}_1(n)$ we define $$C(q):=q{\prod_{n=1}^{\infty}}(1-q^n)^{16}(1-q^{2n})^4,\\D(q):=q^2{\prod_{n=1}^{\infty}}(1-q^n)^8(1-q^{2n})^4(1-q^{4n})^8,\\L(q):=1-24{\sum_{n=1}^{\infty}}{\sigma}_1(n)q^n$$ moreover we obtain the number of representations of $n{\in}{\mathbb{N}}$ as sum of 24 squares, which are possible for us to deduce $L(q^4)C(q)$ and $L(q^4)D(q)$.

A STUDY OF COFFICIENTS DERIVED FROM ETA FUNCTIONS

  • SO, JI SUK;HWANG, JIHYUN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.359-380
    • /
    • 2021
  • The main purpose and motivation of this work is to investigate and provide some new results for coefficients derived from eta quotients related to 3. The result of this paper involve some restricted divisor numbers and their convolution sums. Also, our results give relation between the coefficients derived from infinite product, infinite sum and the convolution sum of restricted divisor functions.

REMARKS OF CONGRUENT ARITHMETIC SUMS OF THETA FUNCTIONS DERIVED FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Ikikardes, Nazli Yildiz
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.351-372
    • /
    • 2013
  • In this paper, we study a distinction the two generating functions : ${\varphi}^k(q)=\sum_{n=0}^{\infty}r_k(n)q^n$ and ${\varphi}^{*,k}(q)={\varphi}^k(q)-{\varphi}^k(q^2)$ ($k$ = 2, 4, 6, 8, 10, 12, 16), where $r_k(n)$ is the number of representations of $n$ as the sum of $k$ squares. We also obtain some congruences of representation numbers and divisor function.

ON SOME SOLUTIONS OF A FUNCTIONAL EQUATION RELATED TO THE PARTIAL SUMS OF THE RIEMANN ZETA FUNCTION

  • Martinez, Juan Matias Sepulcre
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.29-41
    • /
    • 2014
  • In this paper, we prove that infinite-dimensional vector spaces of -dense curves are generated by means of the functional equations f(x)+f(2x)+${\cdots}$+f(nx) = 0, with $n{\geq}2$, which are related to the partial sums of the Riemann zeta function. These curves ${\alpha}$-densify a large class of compact sets of the plane for arbitrary small ${\alpha}$, extending the known result that this holds for the cases n = 2, 3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the $n^{th}$ power of the density approaches the Jordan content of the compact set which the curve densifies.