• Title/Summary/Keyword: infinite plate

Search Result 166, Processing Time 0.026 seconds

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Mixing Enhancement/Suppression of Separated-and-Reattaching Flow by an Upstream Small Object

  • IINVMA, Yusuke;FUNAKI, Jiro;HIRATA, Katsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.106-110
    • /
    • 2004
  • Generally, flow around a bluff body such as a circular cylinder is complicated compared with that around a streamlined body because of the existence of separated shear layers. Long bluff body such as a flat blunt plate is more complicated than short bluff body, because of separated-and-reattaching flow on the after bodies.(omitted)

  • PDF

An Analysis of the Rectangular Plates on an Winkler's Foundtion (Winkler 地盤上에 놓인 矩形板의 解析)

  • Park, Geun-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-56
    • /
    • 1992
  • This study was carried out to investigate the mechanical behaviour of the plate on a Winkler's foundation according to the soil-structures relative stiffness and the applicability of the conventional analysis method. For the above purpose, Winkler's constant of 4, 15, 25 and 100kg/$cm^2$/cm was considered and the plate thickness of 20, 30, 50, 100 and 150cm was adopted. Results obtained from the numerical examples are summarized as follow: 1. The effects of elastic foundation is considerable for plates with small flexural rigidity. 2. As the Winkler's constant increases, the bending moment in the plate becomes localized near the loading point. 3. The stresses evaluated by the conventional method not correct even for rigid ground such as rock. 4. If the relative stiffness of the plate is very large, for example the plate thickness is larger than 100cm, the conventional analysis method can be justified for the design purposes. 5. On assumption the flexural rigidity of the plate is infinite, the interaction of soil and plate can be ignored in design consideration. The numerical examples in this paper show that when the plate thickness is more than 100cm, the effects of elastic foundation almost disappear. In practical design, soil-plate interaction should be taken into account, because the 100cm-thickness of the plate will not be practical value in usual sites.

  • PDF

Vibration analysis of wave motion in micropolar thermoviscoelastic plate

  • Kumar, Rajneesh;Partap, Geeta
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.861-875
    • /
    • 2011
  • The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

Wave Analysis of cylinders with finite internal structures (유한한 내부 구조물이 결합된 실린더의 파동해석)

  • Jung, Byung-Kyoo;Hong, Chin-suk;Ryue, Jungsoo;Jeong, Weui-Bong;Shin, Ku-kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.957-959
    • /
    • 2014
  • The wave analysis of cylinders combined rigidly with a finite plate to identify the effect of the plate on the wave propagation. This paper uses the mobility and impedance coupling method to combine a infinite-length cylinder with the plate, and obtains the coupling forces induced by the vibration of the structure. The waveguide finite element method is used to calculate the wave characteristics of the cylinder excited by the forces. From the results, the dispersion diagram can be obtained. It contains the characteristics induced by the vibration and length of the internal plate. It also shows the wave propagation of elastic waves sustained in the cylinder.

  • PDF

Fabrication of holographic zone plate using dichromated gelatin hologram (Dichromated Gelatin 박막을 이용한 홀로그래픽 Zone Plate 제작 및 해석)

  • 임용석;이영락;곽종훈;최옥식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 1997
  • Holographic zone plate (HZP) is fabricated by interfering a plane wave and a spherical wave in a dichromated gelatin (DCG) film obtained from Agfa 8E75HD plates. We have developed a simple theory for HZP considering optical nonlinearity of DCG material. Analysis of our theory for HZP shows that it has infinite focal points at distances f,f/2, f/3,,…. In experiment, we observed the corresponding focal points of up to f/6 when illuminating HZP by a plane wave. It is also shown that the beam profile around the first focal point measured by using a knife-edge scanning method has a Gaussian shape.

  • PDF

The Effect of the Boundary Condition on the Added Mass of a Rectangular Plate (직사각형판(直四角形板)의 탄성접수진동(彈性接水振動)에서 주변지지조건(周緣支持條件)의 영향(影響))

  • K.C.,Kim;J.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 1978
  • Using the elliptical cylindrical function, the added masses of thin rectangular plates vibrating elastically in an infinite ideal fluid are calculated. For the boundary conditions of the plates, two models are adopted. The plate which is simply-supported on two opposite edges while the other edges are clamped is one and the other is the plate which is simply-supported on two opposite edges while the other edges are free. Same examples are calculated numerically for the fundamental mode in each cases. And the effect of the boundary condition on the added mass are investigated by comparing these data with those of Kim's[4] which were calculated for the simply-supported plates by the same method. It is concluded that it is possible to predict the added mass of a rectangular plate, whose boundary condition is not treated in this report, by using the result of this investigation.

  • PDF

A Study on the Angular Distortion in Weldment6s using the Laminated Plate Theory (적층판 이론을 이용한 용접부 각 변형량 해석에 관한 연구)

  • 손광재;양영수;최병익
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 1999
  • The problems of welding distortion in a welded structures are major concern in heavy industry. Weld-induced angular distortion's formula, composed weld parameter such as heat input and plate thickness, is developed analytically by the use of an elliptic cylindrical inclusion with an eigenstrain in an infinite laminated plate theory. The source of angular distortion in weldments is the plastic strains, which are caused by non-uniform temperature gradient. The distributions of the plastic strain corresponding eigenstrain are assumed by the use of Rosenthal's solution expressing thermal history. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

  • Kim, Hyuntai;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.