• Title/Summary/Keyword: infinite dimensional optimization

Search Result 16, Processing Time 0.019 seconds

A Study on an Optimized Constant Pitch Propeller (일정피치 추진기의 최적화 연구에 관하여)

  • 장택수;홍사영
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2002
  • Optimization of marine propellers of constant pitch is studied, with the help of the infinite dimensional optimization (Jang and Kinoshita, 2000a), which is based on the Hilbert space theory. As a numerical example, the MAU type propeller is considered and used as he initial guess for the optimization method. The numerical computations for an optimal marine propeller are performed for the constant pitch distribution. In addition, a new optimization is suggested with the constraint of constant pitch during optimization.

Application of the Infinite Dimensional Optimization to Marine Propellers and Its Mathematical Uniqueness (무한차원최적화의 추진기에의 응용과 그의 수학적 유일성 고찰)

  • Jang, Taek-S.;Hong, Sa-Y.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.231-236
    • /
    • 2002
  • By using the infinite dimensional optimization[Jang and Kinoshita(2000)]. which is based on the Hilbert space theory, optimal marine propellers are studied. The mathematical uniqueness for the optimized propeller is shown in this study. As a numerical example, the MAU type propeller is considered and used as the initial guess for the optimization method. The numerical results for an optimal marine propeller is illustrated for the pitch distribution.

  • PDF

Finite Elements Adding and Removing Method for Two-Dimensional Shape Optimal Design

  • Lim, Kyoung-Ho;John W. Bull;Kim, Hyun-Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2001
  • A simple procedure to add and remove material simultaneously along the boundary is developed to optimize the shape of a two dimensional elastic problems and to minimize the maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are close to the theoretical results of an elliptical boundary and the stress concentration is reduced by half for the fillet problem. The proposed shape optimization method, when compared with existing derivative based shape optimization methods has many features such as simplicity, applicability, flexibility, computational efficiency and a much better control on stresses on the design boundary.

  • PDF

AN APPROACH FOR SOLVING OF A MOVING BOUNDARY PROBLEM

  • Basirzadeh, H.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.97-113
    • /
    • 2004
  • In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

The Analysis of Noise using of Inverse Problem in Acoustic Field (역문제를 이용한 음향장내의 소음해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.66-75
    • /
    • 1999
  • This paper is concerned with a analysis of noise by inverse problem available for analyzing the two and three-dimensional acoustic field problems. The noise of analysis considered in this study can be reduced to an optimum problem to find the optimal set of parameters defining the vibrating state of noise source surfaces. The optimal set of parameters are searched by the standard optimization procedure minimizing the square sum of the residuals between the measured and computed quantities of sound pressure at some points in the acoustic field. Computation is carried out for typical examples in which the noise sources are located on the infinite plane. It is demonstrated that the noise of analysis can be effectively made by using the sensitive reference data.

  • PDF

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

STABILITY AND OPTIMAL CONTROL OF MICROORGANISMS IN CONTINUOUS CULTURE

  • Li Xiaohong;Feng Enmin;Xiu Zhilong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.425-434
    • /
    • 2006
  • The process of producing 1,3-preprandiol by microorganism continuous cultivation would attain its equilibrium state. How to get the highest concentration of 1,3-propanediol at that time is the aim for producers. Based on this fact, an optimization model is introduced in this paper, existence of optimal solution is proved. By infinite-dimensional optimal theory, the optimal condition of model is given and the equivalence between optimal condition and the zero of optimality function is proved.