• 제목/요약/키워드: infinite dimensional algebra

검색결과 24건 처리시간 0.018초

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

SOME INEQUALITIES OF WEIGHTED SHIFTS ASSOCIATED BY DIRECTED TREES WITH ONE BRANCHING POINT

  • KIM, BO GEON;SEO, MINJUNG
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.695-706
    • /
    • 2015
  • Let ${\mathcal{H}}$ be an infinite dimensional complex Hilbert space, and let $B({\mathcal{H}})$ be the algebra of all bounded linear operators on ${\mathcal{H}}$. Recall that an operator $T{\in}B({\mathcal{H})$ has property B(n) if ${\mid}T^n{\mid}{\geq}{\mid}T{\mid}^n$, $n{\geq}2$, which generalizes the class A-operator. We characterize the property B(n) of weighted shifts $S_{\lambda}$ over (${\eta},\;{\kappa}$)-type directed trees which appeared in the study of subnormality of weighted shifts over directed trees recently. In addition, we discuss the property B(n) of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with nonzero weights are being distinct with respect to $n{\geq}2$. And we give some properties of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with property B(2).

A BERBERIAN TYPE EXTENSION OF FUGLEDE-PUTNAM THEOREM FOR QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.583-587
    • /
    • 2008
  • Let $\mathfrak{L(H)}$ denote the algebra of bounded linear operators on a separable infinite dimensional complex Hilbert space $\mathfrak{H}$. We say that $T{\in}\mathfrak{L(H)}$ is a quasi-class A operator if $$T^*{\mid}T^2{\mid}T{{\geq}}T^*{\mid}T{\mid}^2T$$. In this paper we prove that if A and B are quasi-class A operators, and $B^*$ is invertible, then for a Hilbert-Schmidt operator X $$AX=XB\;implies\;A^*X=XB^*$$.

  • PDF

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.