• 제목/요약/키워드: infinite LMI

검색결과 7건 처리시간 0.023초

동시안정화를 이용한 저차원 극배치 전력계통안정화장치 설계 (Design of a Low-order Pole Placement Power System Stabilizer Using Simultaneous Stabilization)

  • 김석주;이종무;권순만
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1708-1712
    • /
    • 2008
  • This paper describes a linear matrix inequality (LMI) approach to the design of robust low-order power system stabilizers (PSSs), which are used to damp out local-mode oscillations of synchronous generators. The performance of a PSS is expressed as the location of the closed-loop poles, and a single fixed-gain pole-placement controller is synthesized for a wide range of operating conditions. The synthesis results in simultaneous regional pole-placement stabilization. and is formulated as an LMI feasibility problem with a rank condition. A penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments with a single-machine connected to an infinite bus system were performed to demonstrate the proposed method.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

Decentralized Controller Design for Nonlinear Systems using LPV technique

  • Lee, Sangmoon;Kim, Sungjin;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.68.5-68
    • /
    • 2001
  • This paper investigates the problem of linear parameter-dependent output feedback controllers design for interconnected linear parameter-varying(LPV) plant. By using a parameter-independent common Lyapunov function, sucient conditions for solving the problems are established, which allow us to design linear parameter dependent decentralized controllers in terms of scaled H-infinite control problems for related linear systems without interconnections. The solvability conditions are expressed in terms of finite-dimensional linear matrix inequalities(LMI´s) evaluated at the extreme points of the admissible parameter set.

  • PDF

변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법 (Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach)

  • 김준기;양승협;방경호;박홍배
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.181-186
    • /
    • 2012
  • 본 논문에서는 변수 불확실성과 필터이득 섭동을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계기법을 제안한다. 필터가 존재할 충분조건과 견실비약성 $H_{\infty}$ 필터 설계기법을 선형행렬부등식 (LMI: Linear Matrix Inequality 접근법으로 제안하고 시스템과 필터의 불확실성을 매개변수화 선형행렬부등식(PLMI: Parameterized Linear Matrix Inequality)으로 구조화된 불확실성의 형태로 표현한 후 Lyapunov 함수를 통해 시스템의 불확실성과 더불어 필터이득섭동을 고려한 칼만형 $H_{\infty}$ 필터가 존재할 충분조건과 필터설계기법을 PLMI 형태로 보인다. PLMI는 무한개의 LMI의 형태로 나타나므로 완화기법(relaxation technique)을 적용하여 유한개의 LMI의 형태로 변환한 후 견실하고 최적화된 필터이득과 필터섭동범위를 계산하고, 예제와 모의실험을 통해 제시된 필터의 타당성을 검증한다.

Feedback Control for Multidimensional Linear Systems and Interpolation Problems for Multivariable Holomorphic Functions

  • Malakorn, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1847-1852
    • /
    • 2004
  • This article provides the connection between feedback stabilization and interpolation conditions for n-D linear systems (n > 1). In addition to internal stability, if one demands performance as a design goal, then there results an n-D matrix Nevanlinna-Pick interpolation problem. Application of recent work on Nevanlinna-Pick interpolation on the polydisk yields a solution of the problem for the 2-D case. The same analysis applies in the n-D case (n > 2), but leads to solutions which are contractive in a norm (the "Schur-Agler norm") somewhat stronger than the $H^{\infty}$ norm. This is an analogous version of the connection between the standard $H^{\infty}$ control problem and an interpolation problem of Nevanlinna-Pick type in the classical 1-D linear time-invariant systems.

  • PDF

Receding Horizon $H_{\infty}$ Predictive Control for Linear State-delay Systems

  • Lee, Young-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2081-2086
    • /
    • 2005
  • This paper proposes the receding horizon $H_{\infty}$ predictive control (RHHPC) for systems with a state-delay. We first proposes a new cost function for a finite horizon dynamic game problem. The proposed cost function includes two terminal weighting terns, each of which is parameterized by a positive definite matrix, called a terminal weighting matrix. Secondly, we derive the RHHPC from the solution to the finite dynamic game problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the well-known nonincreasing monotonicity. Finally, we shows the asymptotic stability and $H_{\infty}$-norm boundedness of the closed-loop system controlled by the proposed RHHPC. Through a numerical example, we show that the proposed RHHC is stabilizing and satisfies the infinite horizon $H_{\infty}$-norm bound.

  • PDF

전력계통 동기발전기의 T-S Fuzzy 모델링 (T-S Fuzzy Modeling of Synchronous Generator in a Power System)

  • 이희진;백승묵;박정욱
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.