• Title/Summary/Keyword: infinite LMI

Search Result 7, Processing Time 0.03 seconds

Design of a Low-order Pole Placement Power System Stabilizer Using Simultaneous Stabilization (동시안정화를 이용한 저차원 극배치 전력계통안정화장치 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1708-1712
    • /
    • 2008
  • This paper describes a linear matrix inequality (LMI) approach to the design of robust low-order power system stabilizers (PSSs), which are used to damp out local-mode oscillations of synchronous generators. The performance of a PSS is expressed as the location of the closed-loop poles, and a single fixed-gain pole-placement controller is synthesized for a wide range of operating conditions. The synthesis results in simultaneous regional pole-placement stabilization. and is formulated as an LMI feasibility problem with a rank condition. A penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments with a single-machine connected to an infinite bus system were performed to demonstrate the proposed method.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

Decentralized Controller Design for Nonlinear Systems using LPV technique

  • Lee, Sangmoon;Kim, Sungjin;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.5-68
    • /
    • 2001
  • This paper investigates the problem of linear parameter-dependent output feedback controllers design for interconnected linear parameter-varying(LPV) plant. By using a parameter-independent common Lyapunov function, sucient conditions for solving the problems are established, which allow us to design linear parameter dependent decentralized controllers in terms of scaled H-infinite control problems for related linear systems without interconnections. The solvability conditions are expressed in terms of finite-dimensional linear matrix inequalities(LMI´s) evaluated at the extreme points of the admissible parameter set.

  • PDF

Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach (변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법)

  • Kim, Joon Ki;Yang, Seung Hyeop;Bang, Kyung Ho;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.181-186
    • /
    • 2012
  • In this paper, we describe the synthesis of robust and non-fragile Kalman filter design for a class of uncertain linear system with polytopic uncertainties and filter gain variations. The sufficient condition of filter existence, the design method of robust non-fragile filter, and the measure of non-fragility in filter are presented via LMIs(Linear Matrix Inequality) technique. And the obtained sufficient condition can be represented as PLMIs(parameterized linear matrix inequalities) that is, coefficients of LMIs are functions of a parameter confined to a compact set. Since PLMIs generate infinite LMIs, we use relaxation technique, find the finite solution for robust non-fragile filter, and show that the resulting filter guarantees the asymptotic stability with parameter uncertainties and filter fragility. Finally, a numerical example will be shown.

Feedback Control for Multidimensional Linear Systems and Interpolation Problems for Multivariable Holomorphic Functions

  • Malakorn, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1847-1852
    • /
    • 2004
  • This article provides the connection between feedback stabilization and interpolation conditions for n-D linear systems (n > 1). In addition to internal stability, if one demands performance as a design goal, then there results an n-D matrix Nevanlinna-Pick interpolation problem. Application of recent work on Nevanlinna-Pick interpolation on the polydisk yields a solution of the problem for the 2-D case. The same analysis applies in the n-D case (n > 2), but leads to solutions which are contractive in a norm (the "Schur-Agler norm") somewhat stronger than the $H^{\infty}$ norm. This is an analogous version of the connection between the standard $H^{\infty}$ control problem and an interpolation problem of Nevanlinna-Pick type in the classical 1-D linear time-invariant systems.

  • PDF

Receding Horizon $H_{\infty}$ Predictive Control for Linear State-delay Systems

  • Lee, Young-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2081-2086
    • /
    • 2005
  • This paper proposes the receding horizon $H_{\infty}$ predictive control (RHHPC) for systems with a state-delay. We first proposes a new cost function for a finite horizon dynamic game problem. The proposed cost function includes two terminal weighting terns, each of which is parameterized by a positive definite matrix, called a terminal weighting matrix. Secondly, we derive the RHHPC from the solution to the finite dynamic game problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the well-known nonincreasing monotonicity. Finally, we shows the asymptotic stability and $H_{\infty}$-norm boundedness of the closed-loop system controlled by the proposed RHHPC. Through a numerical example, we show that the proposed RHHC is stabilizing and satisfies the infinite horizon $H_{\infty}$-norm bound.

  • PDF

T-S Fuzzy Modeling of Synchronous Generator in a Power System (전력계통 동기발전기의 T-S Fuzzy 모델링)

  • Lee, Hee-Jin;Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.